UVA 11090 判负圈问题
题目链接http://vjudge.net/problem/viewProblem.action?id=34650
题目大意:
给定n个点m条边的加权有向图,求平均权值最小的回路。
平均权值=路径权值之和/路径边数
我们可以通过找到他其中的最小和最大值,然后通过二分不断查找满足的点,然后尽可能的取到它的最大值,因为这里保留两位有效小数,所以设立
while(la-st>0.001)即可
找到一个满足的值是要建立在图上的每一条线段减去这个值后便能得到一个负圈,我们通常用spfa判负圈。
这个spfa只是用来作判断并不是算最短路径,为了防止出现多个连通分量,你只从一个点开始可能遍历整个图,所以最开始就把节点全放入队列中,dp[i]的
值全设定为0,如果出现负圈,则会为了找到最小值一直循环更新,我们用cnt[]数组,当某个点被访问了n次以上时,说明出现了负圈。
具体spfa函数如下所示:
bool spfa()
{
for(int i=;i<=n;i++) cnt[i]=,visit[i]=;
visit[]=;
queue<int> q;
for(int i=;i<=n;i++) q.push(i),dp[i]=;
while(!q.empty()){
int u=q.front();
visit[u]=;
q.pop();
for(int i=first[u];i!=-;i=path[i].next){
if(dp[path[i].y]>dp[u]+path[i].d){
dp[path[i].y]=dp[u]+path[i].d;
if(!visit[path[i].y]) {
q.push(path[i].y);
if(++cnt[path[i].y]>n) return true;
}
}
}
}
return false;
}
我们每次减去一个要找到的mid值,那我们一定要在判断结束后给它加回来以免下次判断出意外
总代码如下:
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
#define N 52
int first[N],visit[N],k,cnt[N],n;
double dp[N],maxn,minn;
struct Path{
int y,next;
double d;
}path[]; void add(int a,int b,double c)
{
path[k].y=b,path[k].d=c,path[k].next=first[a];
first[a]=k++;
} bool spfa()
{
for(int i=;i<=n;i++) cnt[i]=,visit[i]=;
visit[]=;
queue<int> q;
for(int i=;i<=n;i++) q.push(i),dp[i]=;
while(!q.empty()){
int u=q.front();
visit[u]=;
q.pop();
for(int i=first[u];i!=-;i=path[i].next){
if(dp[path[i].y]>dp[u]+path[i].d){
dp[path[i].y]=dp[u]+path[i].d;
if(!visit[path[i].y]) {
q.push(path[i].y);
if(++cnt[path[i].y]>n) return true;
}
}
}
}
return false;
} bool findMid(double mid)
{
for(int i=;i<k;i++) path[i].d-=mid;
bool temp=spfa();
for(int i=;i<k;i++) path[i].d+=mid;
return temp;
} int main()
{
int T,m,a,b;
double c,st,la,mid,ans=-;
scanf("%d",&T);
for(int j=;j<=T;j++){
memset(first,-,sizeof(first));
scanf("%d%d",&n,&m);
k=;
maxn=,minn=;
for(int i=;i<m;i++)
{
scanf("%d%d%lf",&a,&b,&c);
add(a,b,c);
maxn=max(maxn,c);
minn=min(minn,c);
}
st=minn-,la=maxn;
printf("Case #%d: ",j);
if(!findMid(la+)){printf("No cycle found.\n");continue;}
while(la-st>0.001){
mid=st+(la-st)/;
if(findMid(mid)) la=mid;
else ans=mid,st=mid;
}
printf("%.2f\n",ans);
}
return ;
}
UVA 11090 判负圈问题的更多相关文章
- LightOJ-1074(SPFA判负圈+Bellman-Ford算法)
Extended Traffic LightOJ-1074 这题因为涉及到减法和三次方,所以可能会出现负圈. 这里使用的算法叫做SPFA算法,这个可以用来判负圈和求解最短路.Bellman-Ford算 ...
- BZOJ 1486: [HNOI2009]最小圈( 二分答案 + dfs判负圈 )
二分答案m, 然后全部边权减掉m, 假如存在负圈, 那么说明有平均值更小的圈存在. 负圈用dfs判断. ------------------------------------------------ ...
- POJ-3259(最短路+Bellman-Ford算法判负圈)
Wormholes POJ-3259 这题是最短路问题中判断是否存在负圈的模板题. 判断负圈的一个关键就是理解:如果在图中不存在从s可达的负圈,最短路径不会经过一个顶点两次.while循环最多执行v- ...
- [poj3259]Wormholes(spfa判负环)
题意:有向图判负环. 解题关键:spfa算法+hash判负圈. spfa判断负环:若一个点入队次数大于节点数,则存在负环. 两点间如果有最短路,那么每个结点最多经过一次,这条路不超过$n-1$条边. ...
- 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环)
layout: post title: 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环) author: "luowentaoaa" catalog: ...
- UVA 11090 Going in Cycle!!(二分答案+判负环)
在加权有向图中求平均权值最小的回路. 一上手没有思路,看到“回路”,第一想法就是找连通分量,可又是加权图,没什么好思路,那就转换题意:由求回路权值->判负环,求最小值->常用二分答案. 二 ...
- UVA 11090 Going in Cycle!!(Bellman-Ford推断负圈)
题意:给定一个n个点m条边的加权有向图,求平均权值最小的回路. 思路:使用二分法求解.对于每个枚举值mid,推断每条边权值减去mid后有无负圈就可以. #include<cstdio> # ...
- 【dfs判负环】BZOJ1489: [HNOI2009]最小圈
Description 找出一个平均边权最小的圈. Solution 经典问题,二分答案判断有无负环. 但数据范围大,普通spfa会超时,于是用dfs判负环(快多了). 思路是dis设为0,枚举每个点 ...
- [HNOI2009]最小圈 分数规划 spfa判负环
[HNOI2009]最小圈 分数规划 spfa判负环 题面 思路难,代码简单. 题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v ...
随机推荐
- [转]Android 如何监听返回键,弹出一个退出对话框
本文转自:http://blog.csdn.net/sunnyfans/article/details/8094349 Android 如何监听返回键点击事件,并创建一个退出对话框, 防止自己写的应用 ...
- AJPFX总结之Socket编程
一.Socket简介 Socket是进程通讯的一种方式,即调用这个网络库的一些API函数实现分布在不同主机的相关进程之间的数据交换. 几个定义: (1)IP地址:即依照TCP/IP协议分配给本地主机的 ...
- Git之删除分支
目录 删除本地分支 删除远程分支 删除本地分支: git branch -d dev [git branch -参数 本地分支名称] 删除远程分支: git push origin --delete ...
- [转]彻底明确怎样设置minSdkVersion和targetSdkVersion
minSdkVersion和targetSdkVersion相信非常多人都不太理解.我在网上也看了很多关于这两者差别的文章,感觉说的都非常模糊.直到我在stackOverFlow看到Android M ...
- ArcGIS Desktop新建postgresql版sde(10.4.1)的连接
假设连接到的sde数据库是pg数据库,其他参数包括: ip:10.0.0.8 数据库:sde1 用户:sde 密码:sde 打开catalog,新建数据库连接 按如下输入数据库连接参数 红框1是数据库 ...
- java中properties的使用实例
package com.ywx.io; import java.io.File; import java.io.FileInputStream; import java.io.FileOutputSt ...
- html调用js提示方法名 is not defined处理方法
解决办法(方法名 is not defined): dosave=function(){ alert("方法名在前"); } 下面这种写法有时候会出现错误: function do ...
- UVA 1479 Graph and Queries (Treap)
题意: 给一个无向图,再给一系列操作(以下3种),输出最后的平均查询结果. (1)D X 删除第x条边. (2)Q X k 查询与点X相连的连通分量中第k大的点的权值. (3)C X v 将点X的 ...
- 【人工智能系列】python的Quepy库的学习
第一篇 了解 什么是Quepy quepy是一个Python框架改造自然语言问题在数据库查询语言查询.它可以很容易地定制不同类型的问题,在自然语言和数据库查询.因此,用很少的代码,你可以建立自己的系统 ...
- leetcode_935. Knight Dialer_动态规划_矩阵快速幂
https://leetcode.com/problems/knight-dialer/ 在如下图的拨号键盘上,初始在键盘中任意位置,按照国际象棋中骑士(中国象棋中马)的走法走N-1步,能拨出多少种不 ...