如果单按照距离相等的话既是高次也没有半径,所以因为给了 \(n+1\) 组点就想到两两做差。

假如一组点是 \(\{a_i\}\) 一组是 \(\{b_i\}\),我们能轻易地得出

\[\sum_{i=1}^n(x_i-a_i)^2=\sum_{i=1}^n(x_i-b_i)^2 \Rightarrow \sum_{i=1}^n 2(b_i-a_i)x_i=\sum_{i=1}^n(b_i^2-a_i^2)
\]

这是一个 \(n\) 元一次线性方程。我们能搞出 \(n\) 组这样的方程,高斯消元解之。

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
int n;
double tmp1[15], tmp2[15], a[15][15];
void gauss(){
for(int i=1; i<=n; i++){
int maxi=i;
for(int j=i+1; j<=n; j++)
if(fabs(a[j][i])>fabs(a[i][i]))
maxi = j;
double now=a[maxi][i];
swap(a[maxi], a[i]);
for(int j=i; j<=n+1; j++)
a[i][j] /= now;
for(int j=i+1; j<=n; j++){
now = a[j][i];
for(int k=i; k<=n+1; k++)
a[j][k] -= a[i][k] * now;
}
}
for(int i=n; i>=1; i--)
for(int j=1; j<=i-1; j++){
a[j][n+1] -= a[j][i] * a[i][n+1];
a[j][i] = 0;
}
}
int main(){
cin>>n;
for(int i=1; i<=n; i++) scanf("%lf", &tmp1[i]);
for(int i=1; i<=n; i++){
for(int j=1; j<=n; j++)
scanf("%lf", &tmp2[j]);
for(int j=1; j<=n; j++){
a[i][j] = 2 * (tmp2[j] - tmp1[j]);
a[i][n+1] += tmp2[j] * tmp2[j] - tmp1[j] * tmp1[j];
}
swap(tmp1, tmp2);
}
gauss();
for(int i=1; i<=n; i++)
printf("%.3f ", a[i][n+1]);
printf("\n");
return 0;
}

luogu4035 [JSOI2008]球形空间产生器的更多相关文章

  1. [luogu4035 JSOI2008] 球形空间产生器 (矩阵 高斯消元)

    传送门 题目描述 有一个球形空间产生器能够在 nnn 维空间中产生一个坚硬的球体.现在,你被困在了这个 nnn 维球体中,你只知道球面上 n+1n+1n+1 个点的坐标,你需要以最快的速度确定这个 n ...

  2. 【bzoj1013】[JSOI2008]球形空间产生器sphere

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4530  Solved: 2364[Subm ...

  3. BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...

  4. 【BZOJ】1013: [JSOI2008]球形空间产生器sphere

    [BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...

  5. bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3584  Solved: 1863[Subm ...

  6. 线性代数(高斯消元):JSOI2008 球形空间产生器sphere

    JSOI2008 球形空间产生器sphere [题目描述] 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确 ...

  7. BZOJ 1013 [JSOI2008]球形空间产生器sphere

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3074  Solved: 1614[Subm ...

  8. BZOJ1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4846  Solved: 2525[Subm ...

  9. [JSOI2008]球形空间产生器 (高斯消元)

    [JSOI2008]球形空间产生器 \(solution:\) 非常明显的一道高斯消元.给了你n+1个球上的位置,我们知道球上任何一点到球心的距离是相等,所以我们 可以利用这一个性质.我们用n+1个球 ...

随机推荐

  1. Codeforces Round #408 (Div. 2) C

    Description Although Inzane successfully found his beloved bone, Zane, his owner, has yet to return. ...

  2. 146 LRU Cache 最近最少使用页面置换算法

    设计和实现一个  LRU(最近最少使用)缓存 数据结构,使它应该支持以下操作: get 和 put .get(key) - 如果密钥存在于缓存中,则获取密钥的值(总是正数),否则返回 -1.put(k ...

  3. 直接修改HEX修改液晶显示内容的方法

    一先通过HEX2bin工具转成bin文件,可粗略看到字节流对应的内容. 二确定原汉字的扫描方式(美术字是图形方式,不确定扫描方式的穷举各种扫描方式),然后根据字体大小.MSB的位置,利用液晶工具生成汉 ...

  4. Windows API函数大全二

    4. API之打印函数 AbortDoc 取消一份文档的打印 AbortPrinter 删除与一台打印机关联在一起的缓冲文件 AddForm 为打印机的表单列表添加一个新表单 AddJob 用于获取一 ...

  5. 安卓&IOS 手机添加O365 邮箱账户

    手机添加O365 邮件账户 一.Android手机添加O365邮件账户 1. 找到手机上“电子邮件” 2. 打开设置 3. 点击添加账户 4. 选择“Exchange” 5. 输入O365的邮箱账户和 ...

  6. vue2.0组件生命周期探讨

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  7. Windows程序设计2(消息机制、菜单)

    一 .小记; PostQuitMessage(0); 产生WM_QUIT消息给进程队列,且立即返回,同时使得消息循环退出,使得进程终止.(其实它通过PostMessage(hWnd,WM_QUIT,0 ...

  8. type和isinstance区别

    type只能对类型做直接的判断,主要用于获取未知变量的类型. 在程序中几乎很少用到type. 而isinstance功能比type更强,可以对子类型做出推理判断. isinstance主要用于判断A是 ...

  9. (转)配置Spring管理的bean的作用域

    http://blog.csdn.net/yerenyuan_pku/article/details/52833477 Spring管理的bean的作用域有: singleton 在每个Spring ...

  10. centos7 设置grub密码及单用户登录实例

    centos7与centos6在设置grub密码的操作步骤上有很大的差别,特此记录供以后查用 grub加密的目的: 防止不法分子利用单用户模式修改root密码 给grub加密可以采用明文或者加密的密文 ...