[codevs3044][POJ1151]矩形面积求并

试题描述

输入n个矩形,求他们总共占地面积(也就是求一下面积的并)

输入

可能有多组数据,读到n=0为止(不超过15组)

每组数据第一行一个数n,表示矩形个数(n<=100)

接下来n行每行4个实数x1,y1,x2,y1(0 <= x1 < x2 <= 100000;0 <= y1 < y2 <= 100000),表示矩形的左下角坐标和右上角坐标

输出

每组数据输出一行表示答案

输入示例


   25.5

输出示例

180.00

数据规模及约定

见“输入

题解

扫描线 + 线段树。

线段树标记永久化,因为这题每个时刻只需要知道线段树根节点的信息,而不是每次查询一段区间,所以很容易实现,具体见代码,或者黄学长的题解

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <cmath>
using namespace std; int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 110 struct Line {
int l, r, h, tp;
Line() {}
Line(int _1, int _2, int _3, int _4): l(_1), r(_2), h(_3), tp(_4) {}
bool operator < (const Line& t) const { return h < t.h; }
} ls[maxn<<1];
double posx[maxn<<1], posy[maxn<<1], numx[maxn<<1], numy[maxn<<1], ans; int cntv[maxn<<3];
double sumv[maxn<<3];
void maintain(int L, int R, int o) {
int lc = o << 1, rc = lc | 1;
if(cntv[o]) sumv[o] = numx[R] - numx[L-1];
else if(L == R) sumv[o] = 0;
else sumv[o] = sumv[lc] + sumv[rc];
return ;
}
void update(int L, int R, int o, int ql, int qr, int v) {
if(ql <= L && R <= qr) {
cntv[o] += v;
return maintain(L, R, o);
}
int M = L + R >> 1, lc = o << 1, rc = lc | 1;
if(ql <= M) update(L, M, lc, ql, qr, v);
if(qr > M) update(M+1, R, rc, ql, qr, v);
return maintain(L, R, o);
} int main() {
while(1) {
int n = read(), cntx = 0, cnty = 0, cntl = 0;
if(!n) break;
for(int i = 1; i <= n; i++) {
double x1, x2, y1, y2;
scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
posx[++cntx] = x1; posx[++cntx] = x2;
posy[++cnty] = y1; posy[++cnty] = y2;
numx[cntx-1] = posx[cntx-1]; numx[cntx] = posx[cntx];
numy[cnty-1] = posy[cnty-1]; numy[cnty] = posy[cnty];
} sort(numx + 1, numx + cntx + 1);
sort(numy + 1, numy + cnty + 1);
for(int i = 1; i <= n; i++) {
int x1, x2, y1, y2;
x1 = lower_bound(numx + 1, numx + cntx + 1, posx[(i<<1)-1]) - numx;
x2 = lower_bound(numx + 1, numx + cntx + 1, posx[i<<1]) - numx;
y1 = lower_bound(numy + 1, numy + cnty + 1, posy[(i<<1)-1]) - numy;
y2 = lower_bound(numy + 1, numy + cnty + 1, posy[i<<1]) - numy;
ls[++cntl] = Line(x1, x2, y1, 1);
ls[++cntl] = Line(x1, x2, y2, -1);
}
sort(ls + 1, ls + cntl + 1); memset(cntv, 0, sizeof(cntv));
memset(sumv, 0, sizeof(sumv));
ans = 0;
double start = numx[1];
for(int i = 1; i < cntx; i++) numx[i] = numx[i+1] - start;
for(int i = 1; i < cntl; i++) {
if(ls[i].l < ls[i].r) update(1, cntx - 1, 1, ls[i].l, ls[i].r - 1, ls[i].tp);
ans += (numy[ls[i+1].h] - numy[ls[i].h]) * sumv[1];
} printf("%.2lf\n", ans);
} return 0;
}

注意:POJ 上输出格式不太一样,详见题面。

[codevs3044][POJ1151]矩形面积求并的更多相关文章

  1. codves 3044 矩形面积求并

    codves  3044 矩形面积求并  题目等级 : 钻石 Diamond 题目描述 Description 输入n个矩形,求他们总共占地面积(也就是求一下面积的并) 输入描述 Input Desc ...

  2. poj-1151矩形面积并-线段树

    title: poj-1151矩形面积并-线段树 date: 2018-10-30 22:35:11 tags: acm 刷题 categoties: ACM-线段树 概述 线段树问题里的另一个问题, ...

  3. codevs 3044 矩形面积求并

    3044 矩形面积求并   题目描述 Description 输入n个矩形,求他们总共占地面积(也就是求一下面积的并) 输入描述 Input Description 可能有多组数据,读到n=0为止(不 ...

  4. [Codevs] 矩形面积求并

    http://codevs.cn/problem/3044/ 线段树扫描线矩形面积求并 基本思路就是将每个矩形的长(平行于x轴的边)投影到线段树上 下边+1,上边-1: 然后根据线段树的权值和与相邻两 ...

  5. [codevs3044]矩形面积求并

    题目描述 Description 输入n个矩形,求他们总共占地面积(也就是求一下面积的并) 输入描述 Input Description 可能有多组数据,读到n=0为止(不超过15组) 每组数据第一行 ...

  6. 3044 矩形面积求并 - Wikioi

    题目描述 Description 输入n个矩形,求他们总共占地面积(也就是求一下面积的并) 输入描述 Input Description 可能有多组数据,读到n=0为止(不超过15组) 每组数据第一行 ...

  7. POJ 1151 Atlantis 矩形面积求交/线段树扫描线

    Atlantis 题目连接 http://poj.org/problem?id=1151 Description here are several ancient Greek texts that c ...

  8. 矩形面积求并(codevs 3044)

    题目描述 Description 输入n个矩形,求他们总共占地面积(也就是求一下面积的并) 输入描述 Input Description 可能有多组数据,读到n=0为止(不超过15组) 每组数据第一行 ...

  9. poj1151==codevs 3044 矩形面积求并

    Atlantis Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21511   Accepted: 8110 Descrip ...

随机推荐

  1. 找规律 UVALive 6506 Padovan Sequence

    题目传送门 /* 找规律:看看前10项就能看出规律,打个表就行了.被lld坑了一次:( */ #include <cstdio> #include <algorithm> #i ...

  2. Zygote和System进程的启动过程、Android应用进程启动过程

    1.基本过程 init脚本的启动Zygote Zygote进程的启动 System进程的启动 Android应用进程启动过程 2.init脚本的启动 +------------+ +-------+ ...

  3. ambari集群里如何正确删除历史修改记录(图文详解)

    不多说,直接上干货! 答:这些你想删除的话得得去数据库里删除,最好别删除 .  现在默认就是使用好的配置               欢迎大家,加入我的微信公众号:大数据躺过的坑        人工智 ...

  4. (七)Mybatis总结之注解开发

    请移步到 https://www.cnblogs.com/lxnlxn/p/5996707.html

  5. Collection接口框架图

    Java集合大致可分为Set.List和Map三种体系,其中Set代表无序.不可重复的集合:List代表有序.重复的集合:而Map则代表具有映射关系的集合.Java 5之后,增加了Queue体系集合, ...

  6. Java.io.ObjectOutputStream.writeObject()方法实例

    java.io.ObjectOutputStream.writeObject(Object obj) 方法将指定对象写入ObjectOutputStream.该对象的类,类的签名,以及类及其所有超类型 ...

  7. Farseer.net轻量级开源框架 中级篇:常用的扩展方法

    导航 目   录:Farseer.net轻量级开源框架 目录 上一篇:Farseer.net轻量级开源框架 中级篇: BasePage.BaseController.BaseHandler.BaseM ...

  8. ubuntu命令行使用ftp客户端

    转载 本篇文章主要介绍在Ubuntu 8.10下如何使用功能强大的FTP客户端软件NcFTP. Ubuntu的源里为我们提供了FTP客户端软件NcFTP,可这款工具对新手来说不是很方便.本文介绍的是一 ...

  9. glm 矩阵乘法得反过来写

  10. C/C++ 数组、字符串、string

    1.定义数组时,数组中元素的个数不能是动态的,不能用变量表示(const变量可以),必须是已知的. 2.引用数组时只能引用数组中某个元素,不能引用整个数组. 3.定义二维数组时,若同时全部初始化,则可 ...