Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 17336    Accepted Submission(s): 5701

Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.



Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define
a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).



Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im,
jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).



But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
 
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.

Process to the end of file.
 
Output
Output the maximal summation described above in one line.
 
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
 
Sample Output
6
8
Hint
Huge input, scanf and dynamic programming is recommended.

给定一个数组,求M段连续的子段和最大。dp[i][j]表示前i段选择第j个元素的最优解。

dp[i][j]=max(dp[i][j-1]+a[j] , max( dp[i-1][k] ) + a[j] ) 0<k<j

由于k<j,所以我们能够用两个一维数组,一个dp[i]记录当前行状态。一个d[i]记录下一行可选的最大值。

用64位会超时。但int能水过。。

</pre><pre name="code" class="cpp">/*
dp[i][j]=max(dp[i][j-1]+a[j] , max( dp[i-1][k] ) + a[j] ) 0<k<j
第j个元素选i段区间,对于当前元素a[j],能够把它接到第i段的第j-1位置构成一段。
或者单独成一段。 观察这个方程。对于dp[i][j-1]这一项,它和dp[i][j]同i,就是在一段。
用一维数组就能记录;
dp[i-1][k]是i-1段j位置前能取的最大值。我们能够在计算当前第i段时,
把dp[i-1][k]记录下来,取最大值就好了。
*/ #include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
using namespace std;
#define ll __int64
const int inf=0x7fffffff;
#define N 1000010
int a[N];
int pre[N]; //即dp[i-1][k]。记录j位置前可选值
int dp[N];
int main()
{
int i,j,n,m;
int tmp,ans;
while(~scanf("%d%d",&m,&n))
{
for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
dp[i]=0;
pre[i]=0;
}
pre[0]=dp[0]=0;
ans=-inf;
for(i=1;i<=m;i++)
{
tmp=-inf;
for(j=i;j<=n;j++)
{
dp[j]=max(dp[j-1]+a[j],pre[j-1]+a[j]);
pre[j-1]=tmp; //tmp记录的是当前段j位置的最大值,
tmp=max(tmp,dp[j]);//而数组pre[]是记录j-1位置的,所以要先取tmp,再更新tmp
}
}
for(i=m;i<=n;i++)
ans=max(ans,dp[i]);
printf("%d\n",ans);
}
return 0;
}

hdu 1024 Max Sum Plus Plus (子段和最大问题)的更多相关文章

  1. HDU 1024 Max Sum Plus Plus --- dp+滚动数组

    HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...

  2. HDU 1024 Max Sum Plus Plus (动态规划)

    HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...

  3. HDU 1024 Max Sum Plus Plus(m个子段的最大子段和)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/ ...

  4. HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  5. HDU 1024 Max Sum Plus Plus [动态规划+m子段和的最大值]

    Max Sum Plus Plus Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tot ...

  6. HDU 1024 Max Sum Plus Plus (动态规划、最大m子段和)

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  7. HDU 1024 max sum plus

    A - Max Sum Plus Plus Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I6 ...

  8. hdu 1024 Max Sum Plus Plus DP

    Max Sum Plus Plus Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php ...

  9. [ACM] hdu 1003 Max Sum(最大子段和模型)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su ...

随机推荐

  1. Android ListView绑定数据

    ListView绑定数据的三层: ListView绑定数据源从逻辑上可以分为三层:UI层,逻辑层,数据层. UI层:UI层即是ListView控件. 数据层:要展示到ListView控件上面的数据. ...

  2. 第一次创建svn的项目的使用方法

    1.第一步.在服务器上创建svn项目,将开发人人员你的账号密码添加上去. 2.第二步.开始在本地创建一个文件夹,点文件夹,右键->tortoisSVN->repo-brower 填写svn ...

  3. 【译】x86程序员手册23-6.5组合页与段保护

    6.5 Combining Page and Segment Protection 组合页与段保护 When paging is enabled, the 80386 first evaluates ...

  4. CAD控件:COM接口实现自定义实体

    1. 实现步骤: 3 1. 实现步骤: 参考例子 :Src\MxDraw5.2\samples\ie\iedemoTest.htm 1) 增加自定义实体对象 调用DrawCustomEntity函数, ...

  5. CAD得到布局名

    js代码如下: var database = mxOcx.GetDatabase(); var sRet = null; //返回数据库中的布局字典 var spLayoutDictionary = ...

  6. 00Extensible Markup Language

    Extensible Markup Language XML(Extensible Markup Language)可扩展标记语言是用来网络数据的组织结构,传输及存储.

  7. 16Log4J

    Log4J Log4j是Apache的一个开放源代码项目,通过使用Log4j,我们可以控制日志信息输送的目的地是控制台.文件.GUI组件.甚至是套接口服务器.NT的事件记录器.UNIX Syslog守 ...

  8. JSONP 应用

    受限于浏览器的同源安全策略, js 无法发起跨域的请求. 但是 HTML 中的 <script> 标签却可以引入跨域的文件使用. 而 JSONP 就是利用 <script> 的 ...

  9. LeetCode15——3Sum

    数组中找三个数和为0的结果集 1 // 解法一:先排序 然后固定一个值 然后用求两个数的和的方式 public static List<List<Integer>> three ...

  10. C++ string使用

    在c语言里,我们使用一个字符串时,是通过字符数组或者字符指针的方式来进行使用,在C++里,标准模板库已经给我们提供了string类型(string是以类的方式提供给我们使用). 定义和初始化strin ...