[题目链接]

https://codeforces.com/contest/914/problem/D

[算法]

显然 , 当一个区间[l , r]中为d倍数的数的个数 <= 1 , 答案为Yes , 否则为No

线段树简单维护即可 , 详见代码 , 时间复杂度 : O(NlogN ^ 2)

[代码]

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 5e5 + ; int n , m;
int val[MAXN];
int cnt; struct Segment_Tree
{
struct Node
{
int l , r;
int value;
} a[MAXN << ];
inline int gcd(int x , int y)
{
if (y == ) return x;
else return gcd(y , x % y);
}
inline void update(int x)
{
a[x].value = gcd(a[x << ].value , a[x << | ].value);
}
inline void build(int index , int l , int r)
{
a[index].l = l , a[index].r = r;
if (l == r)
{
a[index].value = val[l];
return;
}
int mid = (l + r) >> ;
build(index << , l , mid);
build(index << | , mid + , r);
update(index);
}
inline void modify(int index , int x , int y)
{
if (a[index].l == a[index].r)
{
a[index].value = y;
return;
} else
{
int mid = (a[index].l + a[index].r) >> ;
if (mid >= x) modify(index << , x , y);
else modify(index << | , x , y);
update(index);
}
}
inline void getans(int index , int l , int r , int d)
{
if (cnt > ) return;
int mid = (a[index].l + a[index].r) >> ;
if (a[index].l == l && a[index].r == r)
{
if (l == r)
{
if (a[index].value % d)
++cnt;
return;
}
if ((a[index << ].value % d) && (a[index << | ].value % d))
{
cnt += ;
return;
} else if (a[index << ].value % d) getans(index << , l , mid , d);
else if (a[index << | ].value % d) getans(index << | , mid + , r , d);
} else
{
if (mid >= r) getans(index << , l , r , d);
else if (mid + <= l) getans(index << | , l , r , d);
else
{
getans(index << , l , mid , d);
getans(index << | , mid + , r , d);
}
}
}
} SGT; template <typename T> inline void chkmax(T &x , T y) { x = max(x , y); }
template <typename T> inline void chkmin(T &x , T y) { x = min(x , y); }
template <typename T> inline void read(T &x)
{
T f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
} int main()
{ read(n);
for (int i = ; i <= n; i++) read(val[i]);
SGT.build( , , n);
read(m);
while (m--)
{
int type;
read(type);
if (type == )
{
int l , r , x;
read(l); read(r); read(x);
cnt = ;
SGT.getans( , l , r , x);
if (cnt > ) printf("NO\n");
else printf("YES\n");
} else
{
int x , y;
read(x); read(y);
SGT.modify( , x , y);
}
} return ;
}

[Codeforces 914D] Bash and a Tough Math Puzzle的更多相关文章

  1. Codeforces 914D - Bash and a Tough Math Puzzle 线段树,区间GCD

    题意: 两个操作, 单点修改 询问一段区间是否能在至多一次修改后,使得区间$GCD$等于$X$ 题解: 正确思路; 线段树维护区间$GCD$,查询$GCD$的时候记录一共访问了多少个$GCD$不被X整 ...

  2. Codeforces.914D.Bash and a Tough Math Puzzle(线段树)

    题目链接 \(Description\) 给定一个序列,两种操作:一是修改一个点的值:二是给一个区间\([l,r]\),问能否只修改一个数使得区间gcd为\(x\). \(Solution\) 想到能 ...

  3. 2018.12.08 codeforces 914D. Bash and a Tough Math Puzzle(线段树)

    传送门 线段树辣鸡题. 题意简述:给出一个序列,支持修改其中一个数,以及在允许自行修改某个数的情况下询问区间[l,r][l,r][l,r]的gcdgcdgcd是否可能等于一个给定的数. 看完题就感觉是 ...

  4. Codeforces 914D Bash and a Tough Math Puzzle (ZKW线段树)

    题目链接  Round #458 (Div. 1 + Div. 2, combined)  Problem D 题意  给定一个序列,两种询问:单点修改,询问某个区间能否通过改变最多一个数使得该区间的 ...

  5. 914D Bash and a Tough Math Puzzle

    传送门 分析 用线段树维护区间gcd,每次查询找到第一个不是x倍数的点,如果这之后还有gcd不能被x整除的区间则这个区间不合法 代码 #include<iostream> #include ...

  6. Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论

    Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变 ...

  7. CF 914 D. Bash and a Tough Math Puzzle

    D. Bash and a Tough Math Puzzle http://codeforces.com/contest/914/problem/D 题意: 单点修改,每次询问一段l~r区间能否去掉 ...

  8. D. Bash and a Tough Math Puzzle 解析(線段樹、數論)

    Codeforce 914 D. Bash and a Tough Math Puzzle 解析(線段樹.數論) 今天我們來看看CF914D 題目連結 題目 給你一個長度為\(n\)的數列\(a\), ...

  9. Bash and a Tough Math Puzzle CodeForces - 914D (线段树二分)

    大意:给定序列, 单点修改, 区间询问$[l,r]$内修改至多一个数后$gcd$能否为$x$ 这题比较有意思了, 要注意到询问等价于$[l,r]$内最多有1个数不为$x$的倍数 可以用线段树维护gcd ...

随机推荐

  1. Hdu5921 Binary Indexed Tree

    Hdu5921 Binary Indexed Tree 思路 计数问题,题目重点在于二进制下1的次数的统计,很多题解用了数位DP来辅助计算,定义g(i)表示i的二进制中1的个数, $ans = \su ...

  2. Codeforces 486D Valid Sets (树型DP)

    题目链接 Valid Sets 题目要求我们在一棵树上计符合条件的连通块的个数. 满足该连通块内,点的权值极差小于等于d 树的点数满足 n <= 2000 首先我们先不管这个限制条件,也就是先考 ...

  3. .NET Core 3.0之创建基于Consul的Configuration扩展组件

    写在前面 经过前面三篇关于.NET Core Configuration的文章之后,本篇文章主要讨论如何扩展一个Configuration组件出来.如果前面三篇文章没有看到,可以点击如下地址访问 .N ...

  4. Maven用项目模板生成项目

    Archetype插件是Maven生成项目的项目模板,项目模板就是一个框,把文件夹这些定好,然后就可以在上开写具体逻辑等等. 最常用的命令: mvn archetype:generate 这个是生成一 ...

  5. 【Todo】Java8新特性学习

    参考这篇文章吧: http://blog.csdn.net/vchen_hao/article/details/53301073  还有一个系列

  6. sql 导入数据库 出现乱码问题 解决办法 设置 --default-character-set=utf8

    mysql -u root -p --default-character-set=utf8 use dbname source /root/newsdata.sql

  7. Android开发的环境搭建及HelloWorld的实现

    安装JDK和配置Java开发环境 http://www.oracle.com/technetwork/java/javase/downloads/java-se-jdk-7-download-4321 ...

  8. 网页JS简繁体字转换

    用法:非得加上html头 utf-8编码 其它编码无测试 head 中引用 <script language='javascript' src='zh.js'></script> ...

  9. python xmlrpc

    rpc 协议 RPC = Remote Procedure Call Protocol,即远程过程调用协议. xml rpc 协议 使用http协议作为传输协议,使用xml文本传输命令和数据的一种协议 ...

  10. 把握linux内核设计思想(五):下半部机制之工作队列及几种机制的选择

    [版权声明:尊重原创.转载请保留出处:blog.csdn.net/shallnet,文章仅供学习交流,请勿用于商业用途]         工作队列是下半部的第二种将工作推后运行形式.和软中断.task ...