https://blog.csdn.net/nockinonheavensdoor/article/details/82320580

先看看简单例子:

import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim torch.manual_seed(1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • torch.tensor让list成为tensor:
# Create a 3D tensor of size 2x2x2.
T_data = [[[1., 2.], [3., 4.]],
[[5., 6.], [7., 8.]]]
T = torch.tensor(T_data)
print(T)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 自动求导设requires_grad=True:
# Computation Graphs and Automatic Differentiation
x = torch.tensor([1., 2., 3], requires_grad=True)
y = torch.tensor([4., 5., 6], requires_grad=True)
z = x + y
print(z)
print(z.grad_fn) tensor([ 5., 7., 9.])
<AddBackward1 object at 0x00000247781E0BE0>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • detach()方法获取z的值,但是不能对获取后的值求导了。
new_z = z.detach()
print(new_z.grad_fn) None
  • 1
  • 2
  • 3
  • 4
  • 好了,重点来了

Translation with a Sequence to Sequence Network and Attention

from __future__ import unicode_literals, print_function, division
from io import open
import unicodedata
import string
import re
import random import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

准备数据:

SOS_token = 0
EOS_token = 1 class lang:
def __init__(self, name):
self.name = name
self.word2index = {}
self.word2count = {}
self.index2word = {0:'SOS', 1:'EOS'}
self.n_words = 2 # Count SOS and EOS def addSentence(self, sentence):
for word in sentence.split():
self.addWord(word) def addWord(self, word):
if word not in self.word2index:
self.word2index[word] = self.n_words
self.word2count[word] = 1
self.index2word[self.n_words] = word
self.n_words += 1
else:
self.word2count[word] += 1
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • Unicode字符转为ASCII,用小写字母表示一切,去掉标点符号:
# Turn a Unicode string to plain ASCII, thanks to
# http://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):
return ''.join(
c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn'
) # Lowercase,trim,remove non-letter characters
#re.sub(pattern, repl, string, count=0, flags=0)
def normalizeString(s):
s = unicodeToAscii(s.lower().strip())
# (re) 匹配括号内的表达式,也表示一个组
# [...] 用来表示一组字符,单独列出:[amk] 匹配 'a','m'或'k'
# \1...\9 匹配第n个分组的内容。
s = re.sub(r"([.!?])", r"\1", s)
# [^...] 不在[]中的字符:[^abc] 匹配除了a,b,c之外的字符。
s = re.sub(r"[^a-zA-Z.!?]+",r" ", s)
return s
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

继续:

# 文件用的英语到其他语言,用reverse标志置换一对这样的数据。
def readlangs(lang1, lang2, reverse= False):
print("Reading lines...") #Read the file and split into lines
lines = open('data/%s-%s.txt' % (lang1, lang2), encoding='utf-8').\
read().strip().split('\n')
# Split every line into pairs and normalize
pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines] # Reverse pairs, make lang instances
if reverse:
pairs = [list(reversed(p)) for p in pairs]
input_lang = lang(lang2)
output_lang = lang(lang1)
else:
input_lang = lang(lang1)
output_lang = lang(lang2) return input_lang, output_lang, pairs
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

过滤出部分样本:


MAX_LENGTH = 10 eng_prefixes = (
"i am ", "i m ",
"he is", "he s ",
"she is", "she s",
"you are", "you re ",
"we are", "we re ",
"they are", "they re "
) def filterPair(p):
return len(p[0].split(' ')) < MAX_LENGTH and \
len(p[1].split(' ')) < MAX_LENGTH and \
p[1].startswith(eng_prefixes) def filterPairs(pairs):
return [ pair for pair in pairs if filterPair(pair)]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • The full process for preparing the data is:

    • Read text file and split into lines, split lines into pairs
    • Normalize text, filter by length and content
    • Make word lists from sentences in pairs
def prepareData(lang1, lang2, reverse= False):
input_lang, output_lang, pairs = readlangs(lang1,lang2,reverse)
print("Read %s sentence pairs " % len(pairs))
pairs = filterPairs(pairs)
print("Trimmed to %s sentence pairs " % len(pairs))
print("Counting words...")
for pair in pairs:
input_lang.addSentence(pair[0])
output_lang.addSentence(pair[1])
print("Counted word:")
print(input_lang.name,input_lang.n_words)
print(output_lang.name, output_lang.n_words)
return input_lang, output_lang, pairs input_lang, output_lang, pairs = prepareData('eng','fra',True)
print(random.choice(pairs)) Reading lines...
Read 135842 sentence pairs
Trimmed to 11739 sentence pairs
Counting words...
Counted word:
fra 5911
eng 3965
['elle chante les dernieres chansons populaires.', 'she is singing the latest popular songs.']
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

The Seq2Seq Model

  • 允许句子到句子有不同长度和顺序。

The Encoder :

#编码器
class EncoderRNN(nn.Module):
def __init__(self, input_size, hidden_size):
super(EncoderRNN, self).__init__()
self.hidden_size = hidden_size # 指定embedding矩阵W的大小维度
self.embedding = nn.Embedding(input_size, hidden_size)
# 指定gru单元的大小
self.gru = nn.GRU(hidden_size, hidden_size) def forward(self, input, hidden):
# 扁平化嵌入矩阵
embedded = self.embedding(input).view(1, 1, -1)
print("embedded shape:",embedded.shape)
output = embedded output, hidden = self.gru(output, hidden)
return output, hidden #全0初始化隐层
def initHidden(self):
# 这个初始化维度可以
return torch.zeros(1, 1, self.hidden_size, device=device)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

这里的self.gru = nn.GRU(hidden_size, hidden_size)中,hidden_size在后面设置为256

print("embedded shape:",embedded.shape)的结果是: 
embedded shape: torch.Size([1, 1, 256])

所以self.gru(output, hidden)中传递的第一个维度是[1,1,256],被压缩为这样的。


nn.GRU源码:


The Decoder:

  • seq2seq解码器的简化版:指利用encoder的最后输出,称为context vector,
  • context vector 作为decoder的初始化隐层状态值 
class DecoderRNN(nn.Module):
def self__init__(self, hidden_size, output_size):
super(DecoderRNN, self).__init__()
self.hidden_size = hidden_size self.embedding = nn.Embedding(output_size,hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size)
self.out = nn.Linear(hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden):
output = self.embedding(input).view(1, 1, -1)
# 1行X列的shape做relu
output = F.relu(output)
output, hidden = self.gru(output, hidden)
#output[0]应该是shape为(*,*)的矩阵
output = self.softmax(self.out(output[0]))
return output, hidden
def initHidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

Attention Decoder:

  • 简单的解码器的缺点:把整个句子做编码成一个向量,信息容易丢失,翻译一个词的时候需要追溯之前很长的距离,一般翻译的对应性也没有利用,如翻译第一个词,对应大概率在原句子的第一个位置的信息。
  • encoder的输出向量 会乘以一个attention weights,这个权值用NN来计算完成attn,使用解码器的输入和隐藏状态作为输入。。
  • 因为在训练数据中有各种大小的句子,为了实际创建和训练这一层,我们必须选择一个最大的句子长度(输入长度,对于编码器输出)因为在训练数据中有各种大小的句子,为了实际创建和训练这一层,我们必须选择一个最大的句子长度(输入长度,对于编码器输出) 
class AttnDecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size,
dropout_p = 0.1, max_length=MAX_LENGTH):
super(AttnDecoderRNN,self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.dropout_p = dropout_p
self.max_length = max_length self.embedding = nn.Embedding(self.output_size, self.hidden_size)
self.attn = nn.Linear(self.hidden_size * 2, self.max_length)
self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)
self.dropout = nn.Dropout(self.dropout_p)
#输入向量的维度是10,隐层的长度是10,默认是一层GRU
self.gru = nn.GRU(self.hidden_size, self.hidden_size)
self.out = nn.Linear(self.hidden_size, self.output_size) def forward(self, input, hidden, encoder_outputs):
embedded = self.embedding(input).view(1,1,-1)
embedded = self.dropout(embedded) attn_weights = F.softmax(
self.attn(torch.cat((embedded[0],hidden[0]),1)),dim=1)
# unsqueeze:在指定的轴上多增加一个维度
attn_applied = torch.bmm(attn_weights.unsqueeze(0),
encoder_outputs.unsqueeze(0)) output = torch.cat((embedded[0],attn_applied[0]),1)
output = self.attn_combine(output).unsqueeze(0) output = F.relu(output)
output, hidden = self.gru(output, hidden)
#print("output shape:",output.shape)
#print("output[0]:",output[0])
output = F.log_softmax(self.out(output[0]),dim=1)
return output , hidden, attn_weights def initHidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

继续准备数据:

def indexesFromSentence(lang, sentence):
return [lang.word2index[word] for word in sentence.split(' ')] def tensorFromSentence(lang, sentence):
indexes = indexesFromSentence(lang, sentence)
indexes.append(EOS_token)
return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1) def tensorsFromPair(pair):
input_tensor = tensorFromSentence(input_lang, pair[0])
target_tensor = tensorFromSentence(output_lang, pair[1])
return (input_tensor, target_tensor)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

训练模型

  • 解码器的第一个输入是SOS符,并且把编码器最后的隐层状态作为解码器的第一隐层状态。
  • “Teacher forcing”指用真实样本数据作为下一步的输入,而不是解码器猜测的数据作为下一步输入。
teacher_forcing_ratio = 0.5

def train(input_tensor, output_tensor, encoder, decoder, encoder_optimizer,
decoder_optimizer, criterion, max_length=MAX_LENGTH):
# 这的隐层大小封装在encoder中,然后拿过来在train的时候初始化隐层的大小
encoder_hidden = encoder.initHidden()
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
# 第一维度的大小即输入长度
input_length = input_tensor.size(0)
output_length = output_tensor.size(0) encoder_outputs = torch.zeros(max_length, encoder.hidden_size,device=device) loss = 0 for ei in range(input_length):
encoder_output, encoder_hidden = encoder(input_tensor[ei],encoder_hidden)
# [0,0]选取最大数组的第一个元素组里的第一个
encoder_outputs[ei] = encoder_output[0 , 0]
if ei == 0 :
print("encoder_output[0, 0] shape: ",encoder_outputs[ei].shape) decoder_input = torch.tensor([[SOS_token]], device=device)
decoder_hidden = encoder_output
# niubi
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False if use_teacher_forcing:
# Teacher forcing: Feed the target as the next input
for di in range(output_length):
decoder_ouput,decoder_hidden,decoder_attention = decoder( decoder_input, decoder_hidden, encoder_outputs)
loss = loss + criterion(decoder_ouput, output_tensor[di])
decoder_input = output_tensor[di] # Teacher forcing
else:
for di in range(output_length):
decoder_output,decoder_hidden,decoder_attention=decoder(decoder_input, decoder_hidden, encoder_outputs)
topv ,topi = decoder_output.topk(1)
decoder_input= topi.squeeze().detach() # # detach from history as input loss = loss + criterion(decoder_output, output_tensor[di])
if decoder_input.item() == EOS_token:
break
loss.backward()
encoder_optimizer.step()
decoder_optimizer.step()
return loss.item() / target_length
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49

好了,模型准备结束:

import time
import math def asMinutes(s):
m = math.floors(s / 60)
s -= m * 60
return "%s(- %s)" % (asMinutes(s), asMinutes(rs)) def timeSince(since, percent):
now = time.time()
s = now - since
es = s / (percent)
rs = es - s
return '%s (- %s)' % (asMinutes(s), asMinutes(rs))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

训练过程:

def trainIters(encoder, decoder, n_iters, print_every=1000, plot_every=100, learning_rate=0.01):
start = time.time()
plot_losses = []
print_loss_total = 0 # Reset every print_every
plot_loss_total = 0 # Reset every plot_every encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)
training_pairs = [tensorsFromPair(random.choice(pairs))
for i in range(n_iters)]
criterion = nn.NLLLoss() for iter in range(1, n_iters + 1):
training_pair = training_pairs[iter - 1]
input_tensor = training_pair[0]
target_tensor = training_pair[1] loss = train(input_tensor, target_tensor, encoder,
decoder, encoder_optimizer, decoder_optimizer, criterion)
print_loss_total = loss + print_loss_total
plot_loss_total = loss + plot_loss_total if iter % print_every == 0:
print_loss_avg = print_loss_total / print_every
print_loss_total = 0
print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters),
iter, iter / n_iters * 100, print_loss_avg)) if iter % plot_every == 0:
plot_loss_avg = plot_loss_total / plot_every
plot_losses.append(plot_loss_avg)
plot_loss_total = 0 showPlot(plot_losses)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

画图的这段:

import matplotlib.pyplot as plt
plt.switch_backend('agg')
import matplotlib.ticker as ticker
import numpy as np def showPlot(points):
plt.figure()
fig, ax = plt.subplots()
# this locator puts ticks at regular intervals
loc = ticker.MultipleLocator(base=0.2)
ax.yaxis.set_major_locator(loc)
plt.plot(points)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

验证的代码:

def evaluate(encoder, decoder, sentence, max_length=MAX_LENGTH):
with torch.no_grad():
input_tensor = tensorFromSentence(input_lang, sentence)
input_length = input_tensor.size()[0]
encoder_hidden = encoder.initHidden() encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device) for ei in range(input_length):
encoder_output, encoder_hidden = encoder(input_tensor[ei],
encoder_hidden)
encoder_outputs[ei] += encoder_output[0, 0] decoder_input = torch.tensor([[SOS_token]], device=device) # SOS decoder_hidden = encoder_hidden decoded_words = []
decoder_attentions = torch.zeros(max_length, max_length) for di in range(max_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
decoder_attentions[di] = decoder_attention.data
topv, topi = decoder_output.data.topk(1)
if topi.item() == EOS_token:
decoded_words.append('<EOS>')
break
else:
decoded_words.append(output_lang.index2word[topi.item()]) decoder_input = topi.squeeze().detach() return decoded_words, decoder_attentions[:di + 1]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
def evaluateRandomly(encoder, decoder, n=10):
for i in range(n):
pair = random.choice(pairs)
print('>', pair[0])
print('=', pair[1])
output_words, attentions = evaluate(encoder, decoder, pair[0])
output_sentence = ' '.join(output_words)
print('<', output_sentence)
print('')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

最后一步:

hidden_size = 256
encoder1 = EncoderRNN(input_lang.n_words, hidden_size).to(device)
attn_decoder1 = AttnDecoderRNN(hidden_size, output_lang.n_words, dropout_p=0.1).to(device) trainIters(encoder1, attn_decoder1, 75000, print_every=5000)

先看看简单例子:

import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim torch.manual_seed(1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • torch.tensor让list成为tensor:
# Create a 3D tensor of size 2x2x2.
T_data = [[[1., 2.], [3., 4.]],
[[5., 6.], [7., 8.]]]
T = torch.tensor(T_data)
print(T)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 自动求导设requires_grad=True:
# Computation Graphs and Automatic Differentiation
x = torch.tensor([1., 2., 3], requires_grad=True)
y = torch.tensor([4., 5., 6], requires_grad=True)
z = x + y
print(z)
print(z.grad_fn) tensor([ 5., 7., 9.])
<AddBackward1 object at 0x00000247781E0BE0>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • detach()方法获取z的值,但是不能对获取后的值求导了。
new_z = z.detach()
print(new_z.grad_fn) None
  • 1
  • 2
  • 3
  • 4
  • 好了,重点来了

Translation with a Sequence to Sequence Network and Attention

from __future__ import unicode_literals, print_function, division
from io import open
import unicodedata
import string
import re
import random import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

准备数据:

SOS_token = 0
EOS_token = 1 class lang:
def __init__(self, name):
self.name = name
self.word2index = {}
self.word2count = {}
self.index2word = {0:'SOS', 1:'EOS'}
self.n_words = 2 # Count SOS and EOS def addSentence(self, sentence):
for word in sentence.split():
self.addWord(word) def addWord(self, word):
if word not in self.word2index:
self.word2index[word] = self.n_words
self.word2count[word] = 1
self.index2word[self.n_words] = word
self.n_words += 1
else:
self.word2count[word] += 1
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • Unicode字符转为ASCII,用小写字母表示一切,去掉标点符号:
# Turn a Unicode string to plain ASCII, thanks to
# http://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):
return ''.join(
c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn'
) # Lowercase,trim,remove non-letter characters
#re.sub(pattern, repl, string, count=0, flags=0)
def normalizeString(s):
s = unicodeToAscii(s.lower().strip())
# (re) 匹配括号内的表达式,也表示一个组
# [...] 用来表示一组字符,单独列出:[amk] 匹配 'a','m'或'k'
# \1...\9 匹配第n个分组的内容。
s = re.sub(r"([.!?])", r"\1", s)
# [^...] 不在[]中的字符:[^abc] 匹配除了a,b,c之外的字符。
s = re.sub(r"[^a-zA-Z.!?]+",r" ", s)
return s
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

继续:

# 文件用的英语到其他语言,用reverse标志置换一对这样的数据。
def readlangs(lang1, lang2, reverse= False):
print("Reading lines...") #Read the file and split into lines
lines = open('data/%s-%s.txt' % (lang1, lang2), encoding='utf-8').\
read().strip().split('\n')
# Split every line into pairs and normalize
pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines] # Reverse pairs, make lang instances
if reverse:
pairs = [list(reversed(p)) for p in pairs]
input_lang = lang(lang2)
output_lang = lang(lang1)
else:
input_lang = lang(lang1)
output_lang = lang(lang2) return input_lang, output_lang, pairs
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

过滤出部分样本:


MAX_LENGTH = 10 eng_prefixes = (
"i am ", "i m ",
"he is", "he s ",
"she is", "she s",
"you are", "you re ",
"we are", "we re ",
"they are", "they re "
) def filterPair(p):
return len(p[0].split(' ')) < MAX_LENGTH and \
len(p[1].split(' ')) < MAX_LENGTH and \
p[1].startswith(eng_prefixes) def filterPairs(pairs):
return [ pair for pair in pairs if filterPair(pair)]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • The full process for preparing the data is:

    • Read text file and split into lines, split lines into pairs
    • Normalize text, filter by length and content
    • Make word lists from sentences in pairs
def prepareData(lang1, lang2, reverse= False):
input_lang, output_lang, pairs = readlangs(lang1,lang2,reverse)
print("Read %s sentence pairs " % len(pairs))
pairs = filterPairs(pairs)
print("Trimmed to %s sentence pairs " % len(pairs))
print("Counting words...")
for pair in pairs:
input_lang.addSentence(pair[0])
output_lang.addSentence(pair[1])
print("Counted word:")
print(input_lang.name,input_lang.n_words)
print(output_lang.name, output_lang.n_words)
return input_lang, output_lang, pairs input_lang, output_lang, pairs = prepareData('eng','fra',True)
print(random.choice(pairs)) Reading lines...
Read 135842 sentence pairs
Trimmed to 11739 sentence pairs
Counting words...
Counted word:
fra 5911
eng 3965
['elle chante les dernieres chansons populaires.', 'she is singing the latest popular songs.']
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

The Seq2Seq Model

  • 允许句子到句子有不同长度和顺序。

The Encoder :

#编码器
class EncoderRNN(nn.Module):
def __init__(self, input_size, hidden_size):
super(EncoderRNN, self).__init__()
self.hidden_size = hidden_size # 指定embedding矩阵W的大小维度
self.embedding = nn.Embedding(input_size, hidden_size)
# 指定gru单元的大小
self.gru = nn.GRU(hidden_size, hidden_size) def forward(self, input, hidden):
# 扁平化嵌入矩阵
embedded = self.embedding(input).view(1, 1, -1)
print("embedded shape:",embedded.shape)
output = embedded output, hidden = self.gru(output, hidden)
return output, hidden #全0初始化隐层
def initHidden(self):
# 这个初始化维度可以
return torch.zeros(1, 1, self.hidden_size, device=device)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

这里的self.gru = nn.GRU(hidden_size, hidden_size)中,hidden_size在后面设置为256

print("embedded shape:",embedded.shape)的结果是: 
embedded shape: torch.Size([1, 1, 256])

所以self.gru(output, hidden)中传递的第一个维度是[1,1,256],被压缩为这样的。


nn.GRU源码:


The Decoder:

  • seq2seq解码器的简化版:指利用encoder的最后输出,称为context vector,
  • context vector 作为decoder的初始化隐层状态值 
class DecoderRNN(nn.Module):
def self__init__(self, hidden_size, output_size):
super(DecoderRNN, self).__init__()
self.hidden_size = hidden_size self.embedding = nn.Embedding(output_size,hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size)
self.out = nn.Linear(hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden):
output = self.embedding(input).view(1, 1, -1)
# 1行X列的shape做relu
output = F.relu(output)
output, hidden = self.gru(output, hidden)
#output[0]应该是shape为(*,*)的矩阵
output = self.softmax(self.out(output[0]))
return output, hidden
def initHidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

Attention Decoder:

  • 简单的解码器的缺点:把整个句子做编码成一个向量,信息容易丢失,翻译一个词的时候需要追溯之前很长的距离,一般翻译的对应性也没有利用,如翻译第一个词,对应大概率在原句子的第一个位置的信息。
  • encoder的输出向量 会乘以一个attention weights,这个权值用NN来计算完成attn,使用解码器的输入和隐藏状态作为输入。。
  • 因为在训练数据中有各种大小的句子,为了实际创建和训练这一层,我们必须选择一个最大的句子长度(输入长度,对于编码器输出)因为在训练数据中有各种大小的句子,为了实际创建和训练这一层,我们必须选择一个最大的句子长度(输入长度,对于编码器输出) 
class AttnDecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size,
dropout_p = 0.1, max_length=MAX_LENGTH):
super(AttnDecoderRNN,self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.dropout_p = dropout_p
self.max_length = max_length self.embedding = nn.Embedding(self.output_size, self.hidden_size)
self.attn = nn.Linear(self.hidden_size * 2, self.max_length)
self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)
self.dropout = nn.Dropout(self.dropout_p)
#输入向量的维度是10,隐层的长度是10,默认是一层GRU
self.gru = nn.GRU(self.hidden_size, self.hidden_size)
self.out = nn.Linear(self.hidden_size, self.output_size) def forward(self, input, hidden, encoder_outputs):
embedded = self.embedding(input).view(1,1,-1)
embedded = self.dropout(embedded) attn_weights = F.softmax(
self.attn(torch.cat((embedded[0],hidden[0]),1)),dim=1)
# unsqueeze:在指定的轴上多增加一个维度
attn_applied = torch.bmm(attn_weights.unsqueeze(0),
encoder_outputs.unsqueeze(0)) output = torch.cat((embedded[0],attn_applied[0]),1)
output = self.attn_combine(output).unsqueeze(0) output = F.relu(output)
output, hidden = self.gru(output, hidden)
#print("output shape:",output.shape)
#print("output[0]:",output[0])
output = F.log_softmax(self.out(output[0]),dim=1)
return output , hidden, attn_weights def initHidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

继续准备数据:

def indexesFromSentence(lang, sentence):
return [lang.word2index[word] for word in sentence.split(' ')] def tensorFromSentence(lang, sentence):
indexes = indexesFromSentence(lang, sentence)
indexes.append(EOS_token)
return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1) def tensorsFromPair(pair):
input_tensor = tensorFromSentence(input_lang, pair[0])
target_tensor = tensorFromSentence(output_lang, pair[1])
return (input_tensor, target_tensor)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

训练模型

  • 解码器的第一个输入是SOS符,并且把编码器最后的隐层状态作为解码器的第一隐层状态。
  • “Teacher forcing”指用真实样本数据作为下一步的输入,而不是解码器猜测的数据作为下一步输入。
teacher_forcing_ratio = 0.5

def train(input_tensor, output_tensor, encoder, decoder, encoder_optimizer,
decoder_optimizer, criterion, max_length=MAX_LENGTH):
# 这的隐层大小封装在encoder中,然后拿过来在train的时候初始化隐层的大小
encoder_hidden = encoder.initHidden()
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
# 第一维度的大小即输入长度
input_length = input_tensor.size(0)
output_length = output_tensor.size(0) encoder_outputs = torch.zeros(max_length, encoder.hidden_size,device=device) loss = 0 for ei in range(input_length):
encoder_output, encoder_hidden = encoder(input_tensor[ei],encoder_hidden)
# [0,0]选取最大数组的第一个元素组里的第一个
encoder_outputs[ei] = encoder_output[0 , 0]
if ei == 0 :
print("encoder_output[0, 0] shape: ",encoder_outputs[ei].shape) decoder_input = torch.tensor([[SOS_token]], device=device)
decoder_hidden = encoder_output
# niubi
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False if use_teacher_forcing:
# Teacher forcing: Feed the target as the next input
for di in range(output_length):
decoder_ouput,decoder_hidden,decoder_attention = decoder( decoder_input, decoder_hidden, encoder_outputs)
loss = loss + criterion(decoder_ouput, output_tensor[di])
decoder_input = output_tensor[di] # Teacher forcing
else:
for di in range(output_length):
decoder_output,decoder_hidden,decoder_attention=decoder(decoder_input, decoder_hidden, encoder_outputs)
topv ,topi = decoder_output.topk(1)
decoder_input= topi.squeeze().detach() # # detach from history as input loss = loss + criterion(decoder_output, output_tensor[di])
if decoder_input.item() == EOS_token:
break
loss.backward()
encoder_optimizer.step()
decoder_optimizer.step()
return loss.item() / target_length
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49

好了,模型准备结束:

import time
import math def asMinutes(s):
m = math.floors(s / 60)
s -= m * 60
return "%s(- %s)" % (asMinutes(s), asMinutes(rs)) def timeSince(since, percent):
now = time.time()
s = now - since
es = s / (percent)
rs = es - s
return '%s (- %s)' % (asMinutes(s), asMinutes(rs))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

训练过程:

def trainIters(encoder, decoder, n_iters, print_every=1000, plot_every=100, learning_rate=0.01):
start = time.time()
plot_losses = []
print_loss_total = 0 # Reset every print_every
plot_loss_total = 0 # Reset every plot_every encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)
training_pairs = [tensorsFromPair(random.choice(pairs))
for i in range(n_iters)]
criterion = nn.NLLLoss() for iter in range(1, n_iters + 1):
training_pair = training_pairs[iter - 1]
input_tensor = training_pair[0]
target_tensor = training_pair[1] loss = train(input_tensor, target_tensor, encoder,
decoder, encoder_optimizer, decoder_optimizer, criterion)
print_loss_total = loss + print_loss_total
plot_loss_total = loss + plot_loss_total if iter % print_every == 0:
print_loss_avg = print_loss_total / print_every
print_loss_total = 0
print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters),
iter, iter / n_iters * 100, print_loss_avg)) if iter % plot_every == 0:
plot_loss_avg = plot_loss_total / plot_every
plot_losses.append(plot_loss_avg)
plot_loss_total = 0 showPlot(plot_losses)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

画图的这段:

import matplotlib.pyplot as plt
plt.switch_backend('agg')
import matplotlib.ticker as ticker
import numpy as np def showPlot(points):
plt.figure()
fig, ax = plt.subplots()
# this locator puts ticks at regular intervals
loc = ticker.MultipleLocator(base=0.2)
ax.yaxis.set_major_locator(loc)
plt.plot(points)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

验证的代码:

def evaluate(encoder, decoder, sentence, max_length=MAX_LENGTH):
with torch.no_grad():
input_tensor = tensorFromSentence(input_lang, sentence)
input_length = input_tensor.size()[0]
encoder_hidden = encoder.initHidden() encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device) for ei in range(input_length):
encoder_output, encoder_hidden = encoder(input_tensor[ei],
encoder_hidden)
encoder_outputs[ei] += encoder_output[0, 0] decoder_input = torch.tensor([[SOS_token]], device=device) # SOS decoder_hidden = encoder_hidden decoded_words = []
decoder_attentions = torch.zeros(max_length, max_length) for di in range(max_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
decoder_attentions[di] = decoder_attention.data
topv, topi = decoder_output.data.topk(1)
if topi.item() == EOS_token:
decoded_words.append('<EOS>')
break
else:
decoded_words.append(output_lang.index2word[topi.item()]) decoder_input = topi.squeeze().detach() return decoded_words, decoder_attentions[:di + 1]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
def evaluateRandomly(encoder, decoder, n=10):
for i in range(n):
pair = random.choice(pairs)
print('>', pair[0])
print('=', pair[1])
output_words, attentions = evaluate(encoder, decoder, pair[0])
output_sentence = ' '.join(output_words)
print('<', output_sentence)
print('')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

最后一步:

hidden_size = 256
encoder1 = EncoderRNN(input_lang.n_words, hidden_size).to(device)
attn_decoder1 = AttnDecoderRNN(hidden_size, output_lang.n_words, dropout_p=0.1).to(device) trainIters(encoder1, attn_decoder1, 75000, print_every=5000)

pytorch记录:seq2seq例子看看这torch怎么玩的的更多相关文章

  1. PyTorch官方中文文档:torch.nn

    torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom ...

  2. PyTorch官方中文文档:torch

    torch 包 torch 包含了多维张量的数据结构以及基于其上的多种数学操作.另外,它也提供了多种工具,其中一些可以更有效地对张量和任意类型进行序列化. 它有CUDA 的对应实现,可以在NVIDIA ...

  3. PyTorch官方中文文档:torch.optim 优化器参数

    内容预览: step(closure) 进行单次优化 (参数更新). 参数: closure (callable) –...~ 参数: params (iterable) – 待优化参数的iterab ...

  4. PyTorch官方中文文档:torch.optim

    torch.optim torch.optim是一个实现了各种优化算法的库.大部分常用的方法得到支持,并且接口具备足够的通用性,使得未来能够集成更加复杂的方法. 如何使用optimizer 为了使用t ...

  5. [Spark][Python]DataFrame中取出有限个记录的例子

    [Spark][Python]DataFrame中取出有限个记录的例子: sqlContext = HiveContext(sc) peopleDF = sqlContext.read.json(&q ...

  6. 基于PyTorch的Seq2Seq翻译模型详细注释介绍(一)

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/qysh123/article/detai ...

  7. pytorch做seq2seq注意力模型的翻译

    以下是对pytorch 1.0版本 的seq2seq+注意力模型做法语--英语翻译的理解(这个代码在pytorch0.4上也可以正常跑): # -*- coding: utf-8 -*- " ...

  8. 【转载】 Pytorch(0)降低学习率torch.optim.lr_scheduler.ReduceLROnPlateau类

    原文地址: https://blog.csdn.net/weixin_40100431/article/details/84311430 ------------------------------- ...

  9. pytorch中Math operation操作:torch.ger()

    torch.ger(vec1, vec2, out=None) → Tensor Outer product of vec1 and vec2. If vec1 is a vector of size ...

随机推荐

  1. 《Iterative-GAN》的算法伪代码整理

    花了一下午时间整理本人的论文Iterative-GAN的算法伪代码,由于篇幅较长,投会议方面的文章就不加入了,以后如果投期刊再说.留此存档.

  2. 学习笔记::AC自动机

    最先开始以为和自动刷题机是一个东西... 其实就是kmp的一个拓展.学完kmp再学这个就会发现其实不难 1.kmp是一个串匹配一个串,但是当我们想用多个串匹配一个文本的时候,kmp就不行了,因此我们有 ...

  3. 洛谷 P2764 最小路径覆盖问题【匈牙利算法】

    经典二分图匹配问题.把每个点拆成两个,对于原图中的每一条边(i,j)连接(i,j+n),最小路径覆盖就是点数n-二分图最大匹配.方案直接顺着匹配dsf.. #include<iostream&g ...

  4. P5071 [Ynoi2015]此时此刻的光辉

    传送门 lxl大毒瘤 首先一个数的因子个数就是这个数的每个质因子的次数+1的积,然后考虑把每个数分解质因子,用莫队维护,然后我交上去就0分了 如果是上面那样的话,我们每一次移动指针的时间复杂度是O(这 ...

  5. glance镜像服务

    一.glance介绍: 因为云平台是提供Iass层的基础设施服务,我们拿到的是一台虚拟机,那么要用虚拟机的话必须有底层的镜像做支撑,所以说镜像的话也有一个服务来管理.但是我们云平台用的镜像不是装操作系 ...

  6. Caused by: java.lang.ClassNotFoundException: org.apache.log4j.Logger

    myeclipse 新建web项目,报错Caused by: java.lang.ClassNotFoundException: org.apache.log4j.Logger,查看项目中已经有引入了 ...

  7. 题解报告:hdu 1236 排名

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1236 Problem Description 今天的上机考试虽然有实时的Ranklist,但上面的排名 ...

  8. Resources.getSystem() 与 getResources()区别

    参考: http://stackoverflow.com/questions/8633539/resources-getsystem-vs-getresources 相同: 都是取得 Resource ...

  9. NDK(10)Android.mk各属性简介,Android.mk 常用模板--未完

    参考 : http://blog.csdn.net/hudashi/article/details/7059006 1. Android.mk简介 Android.mk文件是GNU Makefile的 ...

  10. C#中的事件机制

    这几天把事件学了一下,总算明白了一些.不多说了,直接代码. class Program { static void Main(string[] args) { CatAndMouse h = new ...