虽然对这道题没有什么帮助,但是还是记一下:约数个数也是可以线性筛的

http://www.cnblogs.com/xzz_233/p/8365414.html

测正确性题目:https://www.luogu.org/problemnew/show/P1403

这个好像叫d函数
看$d=(a_1+1)(a_2+1)\cdots(a_k+1)$
然而还不行,你还要记这个数的$a_1$(定义在上面)记为f
首先,如果p是质数,那么d(p)=2,f(p)=1
然后,将合数n分解成n=px(p是n最小的质因子),
若$p\nmid x$则d(n)=2d(x),f(n)=1(d乘2相当于是要不要新选p)
否则$f(n)=f(x)+1$,$d(n)=d(x)*\frac{f(n)+1}{f(x)+1}$


https://www.luogu.org/problemnew/show/P3935

题目给的f(x)就是x的约数个数。。。

那么,$\sum_{i=1}^n(\sum_{d|n}1)=\sum_{i=1}^n({\lfloor}{\frac{n}{i}}{\rfloor})$

数论分块即可。。。

 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
#define md 998244353
ll x,y,ans;
int main()
{
ll i,j;
scanf("%lld%lld",&x,&y);
for(i=;i<=y;i=j+)
{
j=min(y,y/(y/i));
ans+=(y/i)*(j-i+);
}
x--;
for(i=;i<=x;i=j+)
{
j=min(x,x/(x/i));
ans-=(x/i)*(j-i+);
}
printf("%lld",ans%md);
return ;
}

洛谷 P3935 Calculating的更多相关文章

  1. 洛谷P3935 Calculating(整除分块)

    题目链接:洛谷 题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$.求 $\sum^r_{ ...

  2. 洛谷P3935 Calculating (莫比乌斯反演)

    P3935 Calculating 题目描述 若xx分解质因数结果为\(x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n},令f(x)=(k_1+1)(k_2+1)\cdots ...

  3. 洛谷 - P3935 - Calculating - 整除分块

    https://www.luogu.org/fe/problem/P3935 求: \(F(n)=\sum\limits_{i=1}^{n}d(i)\) 枚举因子\(d\),每个因子\(d\)都给其倍 ...

  4. [洛谷P3935]Calculating

    题目大意:设把$x$分解质因数的结果为$x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}$,令$f(x)=(k_1+1)(k_2+1)\cdots (k_n+1)$,求$\su ...

  5. 洛谷 P3935 Calculating 题解

    原题链接 一看我感觉是个什么很难的式子-- 结果读完了才发现本质太简单. 算法一 完全按照那个题目所说的,真的把质因数分解的结果保留. 最后乘. 时间复杂度:\(O(r \sqrt{r})\). 实际 ...

  6. [洛谷3935]Calculating

    题目链接:https://www.luogu.org/problemnew/show/P3935 首先显然有\(\sum\limits_{i=l}^rf(i)=\sum\limits_{i=1}^rf ...

  7. 洛谷P3935 Calculation [数论分块]

    题目传送门 格式难调,题面就不放了. 分析: 实际上这个就是这道题的升级版,没什么可讲的,数论分块搞就是了. Code: //It is made by HolseLee on 18th Jul 20 ...

  8. 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)

    上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...

  9. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

随机推荐

  1. 使用$.when()解决AJAX异步难题之:多个ajax操作进行逻辑与(and)

    上一篇文章"JQuery.deferred提供的promise解决方式",提到了javascript异步操作的3个问题,以及javascript Promise入门.如今我们看下怎 ...

  2. iOS清理WebView的缓存

    NSHTTPCookie *cookie; NSHTTPCookieStorage *storage = [NSHTTPCookieStorage sharedHTTPCookieStorage]; ...

  3. Cookie 和 Session 的区别 与联系

    一. 概念理解 你可能有留意到当你浏览网页时,会有一些推送消息,大多数是你最近留意过的同类东西,比如你想买桌子,上淘宝搜了一下,结果连着几天会有各种各样的桌子的链接.这是因为 你浏览某个网页的时候,W ...

  4. 6.游戏特别离不开脚本(4)-应该避免将集合框架对象传给JS

    java map  传给 javascript 不是自动关联的,最好别传啊,遍历起来也麻烦(尽量避开集合框架吧),用数组或者自建一个对象.这里虽然有种方法: // build a Map Map< ...

  5. Android应用之——最新版本号SDK V2.4实现QQ第三方登录

    为什么要写这篇博客呢?由于.我在做这个第三方登录的时候,找了非常多资料,发现要么就是过时了.要么就是说的非常不清楚.非常罗嗦.并且非常多都是一些小demo,不是什么实例.甚至连腾讯官方的文档都有这个问 ...

  6. JS中prototype,js原型扩展

    作者:轩脉刃(yjf512)出处:(http://www.cnblogs.com/yjf512/)版权声明:本文的版权归作者与博客园共有.欢迎转载阅读,转载时须注明本文的详细链接. 原文 http:/ ...

  7. java包和javax包的区别

    基本类库和扩展类库 一般的lang,util都放在java.包 servlet放在javax包 以前sun把java中的叫核心库,把javax中的叫扩展库.现在sun已经把java和javax中的都叫 ...

  8. 利用Python3的dpkt库进行ARP扫描

    背景 正在学习网络协议,用Python写起来方便点,可以快速熟悉协议本身,也给自己补充一些Python库. 偶然看到这篇文章,讲的是Python发ARP包,发现是Python2的,这里改了一下,用Py ...

  9. POJ1426 Find The Multiple —— BFS

    题目链接:http://poj.org/problem?id=1426 Find The Multiple Time Limit: 1000MS   Memory Limit: 10000K Tota ...

  10. EOS智能合约为何选择Web Assembly(wasm)

    比特币的程序非常简单,由解锁脚本和锁定脚本构成.以太坊有智能合约,有图灵完备的虚拟机EVM,但是指令也相对简单,且自成一套.这两种程序本质上都是脚本程序,即由程序翻译指令并执行,而不是由本地机器CPU ...