洛谷 P3935 Calculating
虽然对这道题没有什么帮助,但是还是记一下:约数个数也是可以线性筛的
http://www.cnblogs.com/xzz_233/p/8365414.html
测正确性题目:https://www.luogu.org/problemnew/show/P1403
这个好像叫d函数
看$d=(a_1+1)(a_2+1)\cdots(a_k+1)$
然而还不行,你还要记这个数的$a_1$(定义在上面)记为f
首先,如果p是质数,那么d(p)=2,f(p)=1
然后,将合数n分解成n=px(p是n最小的质因子),
若$p\nmid x$则d(n)=2d(x),f(n)=1(d乘2相当于是要不要新选p)
否则$f(n)=f(x)+1$,$d(n)=d(x)*\frac{f(n)+1}{f(x)+1}$
https://www.luogu.org/problemnew/show/P3935
题目给的f(x)就是x的约数个数。。。
那么,$\sum_{i=1}^n(\sum_{d|n}1)=\sum_{i=1}^n({\lfloor}{\frac{n}{i}}{\rfloor})$
数论分块即可。。。
- #include<cstdio>
- #include<algorithm>
- #include<cstring>
- #include<vector>
- using namespace std;
- #define fi first
- #define se second
- #define mp make_pair
- #define pb push_back
- typedef long long ll;
- typedef unsigned long long ull;
- typedef pair<int,int> pii;
- #define md 998244353
- ll x,y,ans;
- int main()
- {
- ll i,j;
- scanf("%lld%lld",&x,&y);
- for(i=;i<=y;i=j+)
- {
- j=min(y,y/(y/i));
- ans+=(y/i)*(j-i+);
- }
- x--;
- for(i=;i<=x;i=j+)
- {
- j=min(x,x/(x/i));
- ans-=(x/i)*(j-i+);
- }
- printf("%lld",ans%md);
- return ;
- }
洛谷 P3935 Calculating的更多相关文章
- 洛谷P3935 Calculating(整除分块)
题目链接:洛谷 题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$.求 $\sum^r_{ ...
- 洛谷P3935 Calculating (莫比乌斯反演)
P3935 Calculating 题目描述 若xx分解质因数结果为\(x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n},令f(x)=(k_1+1)(k_2+1)\cdots ...
- 洛谷 - P3935 - Calculating - 整除分块
https://www.luogu.org/fe/problem/P3935 求: \(F(n)=\sum\limits_{i=1}^{n}d(i)\) 枚举因子\(d\),每个因子\(d\)都给其倍 ...
- [洛谷P3935]Calculating
题目大意:设把$x$分解质因数的结果为$x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}$,令$f(x)=(k_1+1)(k_2+1)\cdots (k_n+1)$,求$\su ...
- 洛谷 P3935 Calculating 题解
原题链接 一看我感觉是个什么很难的式子-- 结果读完了才发现本质太简单. 算法一 完全按照那个题目所说的,真的把质因数分解的结果保留. 最后乘. 时间复杂度:\(O(r \sqrt{r})\). 实际 ...
- [洛谷3935]Calculating
题目链接:https://www.luogu.org/problemnew/show/P3935 首先显然有\(\sum\limits_{i=l}^rf(i)=\sum\limits_{i=1}^rf ...
- 洛谷P3935 Calculation [数论分块]
题目传送门 格式难调,题面就不放了. 分析: 实际上这个就是这道题的升级版,没什么可讲的,数论分块搞就是了. Code: //It is made by HolseLee on 18th Jul 20 ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
随机推荐
- linux centos7 安装常用软件java,node,mysql,Seafile
linux centos7 安装常用软件java,node,mysql,Seafile 安装压缩解压缩软件 yum install -y unzip zip 安装git yum install -y ...
- Android GUI系统学习1:Gralloc
Gralloc模块是从Android Eclair(android 2.1)開始增加的一个HAL模块,Gralloc的含义为是Graphics Alloc(图形分配).他对上为libui提供服务,为其 ...
- 设计模式学习笔记——Prototype原型模式
原型模型就是克隆. 还有深克隆.浅克隆,一切听上去都那么耳熟能详.
- DRF之视图组件 三次封装
1.为什么要进行封装 1.1 在处理表的时候,如果有几十张表都需要增删改查查时,如果每一张表都写这些方法,会让代码显得冗余,所以需要将这些方法进行封装,然后不同的表都去继承这写方法.(这是思路) 1. ...
- python -- day 11 考试题
1. 文件t1.txt里面的内容为:(6分) 1,alex,22,13651054608,IT 2,wusir,23,13304320533,Tearcher 3,taibai,18,13332353 ...
- python day - 8 文件
文件的相关操作 1.文件的两种路径 绝对路径:需要从根目录下一层一层往下去找,文件或者程序所在的地方,中间所经过的所有的路径到你要找的文件或程序,就是绝对路径. 相对路径:只需要将要找的文件或者程序, ...
- CodeChef - PRIMEDST Prime Distance On Tree 树分治 + FFT
Prime Distance On Tree Problem description. You are given a tree. If we select 2 distinct nodes unif ...
- YTU 2451: 股市风云
2451: 股市风云 时间限制: 1 Sec 内存限制: 128 MB 提交: 37 解决: 25 [提交][状态][讨论版] 题目描述 股市强烈动荡,有涨有跌.现在有一组数据表示各公司的涨跌(涨 ...
- 【Selenium】测试流程和框架
流程: 分析自动化测试需求→制定自动化测试计划→设计自动化测试用例→搭建环境→编写脚本→分析结果→维护脚本 框架: 线性测试.模块化测试.数据驱动.关键字驱动
- 原:maven+springMVC+mybatis+junit详细搭建过程
阅读目录 1. 工程目录结构整理清楚 2. 引入依赖包 3. 配置数据库连接属性 4. 配置spring配置文件 5. java代码编写(model,dao,service层代码) 6. m ...