题目:给定n个数字a1...an。有m个询问,格式为L R X Y,意为求aL到aR之间与x的最大公因数为y的个数。

   数据组数T<=20

   1<=n,m<=1e5

   1<=ai<=1e5

   1<=L,R<=n;1<=X,Y<=1e5

分析:

     考虑预处理出1~1e5所有数字的因子

   然后就可以知道每个因子在1~n这n个位置的分布情况

   对于一个询问(l,r,x,y)

   就相当于求[l,r]之间公因数为y,[l,r]之间公因数为2y,[l,r]之间公因数为3y……等等这些做容斥,很容易就看出这满足经典的莫比乌斯反演

   具体的F(n)表示[l,r]之间和x共有因数y的数字的个数,f(n)表示[l,r]之间和x的最大公约数位y的数字的个数

   那么f(n)=Σμ(d/n)F(d)

   那么F(d)怎么求呢,F(d)其实就是因数d在[l,r]中出现了几个,直接二分就行了

   复杂度不好估计,但不会超过O(n根号n)

FJNUOJ1158(莫比乌斯反演)的更多相关文章

  1. hdu1695 GCD(莫比乌斯反演)

    题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...

  2. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  3. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  4. Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)

    题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...

  5. 莫比乌斯函数筛法 & 莫比乌斯反演

    模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i ...

  6. 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Sta ...

  7. POI2007_zap 莫比乌斯反演

    题意:http://hzwer.com/4205.html 同hdu1695 #include <iostream> #include <cstring> #include & ...

  8. hdu.5212.Code(莫比乌斯反演 && 埃氏筛)

    Code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  9. CSU 1325 莫比乌斯反演

    题目大意: 一.有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个约数: 二.有多少个有序数对(x,y)满足1<=x<=A ...

随机推荐

  1. 学习笔记 第十五章 JavaScript基础

    第15章   JavaScript基础 [学习重点] 了解JavaScript基础知识 熟悉常量和变量 能够使用表达式和运算符 正确使用语句 能够掌握数据类型和转换的基本方法 正确使用函数.对象.数组 ...

  2. APP崩溃处理

    以前经常遇到APP内部异常情况下的Exception,最初是通过try catch这样的方式处理:但是APP上线后,用户在特地的情况下触发 了某些Exception,当然这些Exception从理论和 ...

  3. mac 下使用gcc 编译c函数

    mac 终端其实和window 的cmd类似,由于mac 的os x 采用了unix 系统,所以,各种类似UNIX下的命令都有用.最近在看computer science ,用到了命令行. 下面是一个 ...

  4. 未找到框架“.NETFramework,Version=v4.5”的引用程序集

    问题描述 一般是在编译的时候会出现这样子的问题, 问题原因: C:\Program Files (x86)\Reference Assemblies\Microsoft\Framework\.NETF ...

  5. NOT IN、NOT EXISTS的相关子查询改用LEFT JOIN--sql2000性能优化

    参考文章:SQL SERVER性能优化综述(很好的总结,不要错过哦) 数据库:系统数据库 子查询的用法 子查询是一个 SELECT 查询,它嵌套在 SELECT.INSERT.UPDATE.DELET ...

  6. rem手机端页面自适应布局(待修正下一篇完美布局)

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. windows测试物理网络

    ping 192.168.10.88 -t ,参数-t是等待用户去中断测试 

  8. C++中何时使用引用

    使用引用参数的原因: 程序员能够修改调用函数中的数据对象 通过传递引用而不是整个数据对象,可以提高程序的运行速度. 当数据对象较大时(如结构和类对象),第二个原因最重要,这些也是使用指针参数的原因.这 ...

  9. 【转载】关于 Google Chrome 中的全屏模式和 APP 模式

    [来源于]新浪微博:@阿博 http://www.cnblogs.com/abel/p/3235839.html 全屏模式:kiosk 默认全屏打开一个网页呢,只需要在快捷方式中加上 --kiosk ...

  10. c++ 回调的实现

    什么是回调?通常发生在需要两个角色即调用者与实现者的情形上,即我们希望当产生某个事件时,调用实现者定义的某个函数.当然这个概念很大,不是说操作系统的信号量,条件变量什么的,是在语言级别实现,如一个Fr ...