2017 CCPC 杭州 HDU6265B 积性函数
题目链接 http://acm.hdu.edu.cn/downloads/CCPC2018-Hangzhou-ProblemSet.pdf
B题 数论题 h(n)=∑ d|n φ(d) × n /d 求一个数的h值 我们只要意识到他是一个积性函数就解决了 这个函数看起来很像狄利克雷卷积 我们构造一个函数f(n)=n;h(n)=∑ d|n φ(d) × f(n /d)
欧拉函数φ是积性函数 构造的f是完全积性函数 所以他们的狄利克雷卷积h也是积性函数 然后推导一下答案就是 ∑(pi^qi+(pi-1)*qi*pi^(qi-1)) (1<=i<=m)
其实当你没有意识到他是一个积性函数 推导的时候也可以发现他可以用组合情况写 这就用到了子集生成知识了很简单一个dfs就可以了 m最大20 子集个数最大就是2^20 可以接受
然后枚举子集就可以得到结果了
关于 积性函数和狄利克雷卷积推荐几个博客 https://www.cnblogs.com/jianglangcaijin/p/6035766.html#undefined
https://blog.csdn.net/liyizhixl/article/details/79997478
https://www.cnblogs.com/wfj2048/p/6537861.html
积性函数性质
狄利克雷卷积性质:
- (f∗g)=∑d|nf(d)g(nd)(f∗g)=∑d|nf(d)g(nd)
- f∗(g∗h)=(f∗g)∗hf∗(g∗h)=(f∗g)∗h
- f∗(g+h)=f∗g+f∗hf∗(g+h)=f∗g+f∗h
- f∗g=g∗f
位向量法子集生成模板 O(n*2^n)
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+,M = ;
typedef long long ll;
int a[maxn],b[maxn];
void print_subset(int n, int b[],int cur)
{
if(cur==n)
{
for(int i=;i<cur;i++)
{
if(b[i])
printf("%d ",a[i]);
}
printf("\n");
return;
}
b[cur]=;
print_subset(n,b,cur+);
b[cur]=;
print_subset(n,b,cur+);
}
int main()
{
int n;
cin>>n;
for(int i=;i<n;i++)
a[i]=i+;
memcpy(b,a,sizeof(a));
print_subset(n,b,); //传参后会修改b的值 所以copy一个数组
}
AC代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+ ,mod = ;
typedef long long ll;
ll poww(ll a,ll b)
{
ll ans=;
while(b>)
{
if(b&)
ans=(ans*a)%mod;
b=b>>;
a=(a*a)%mod;
}
return ans;
}
int main()
{
int t;
cin>>t;
while(t--)
{
ll q,p,ans=;
int m;
cin>>m;
while(m--)
{
cin>>p>>q;
ll temp=;
temp=(temp*(p-))%mod;
temp=(temp*q)%mod;
temp=(temp*poww(p,q-))%mod;
temp=(temp+poww(p,q))%mod;
ans=ans*temp%mod;
//cout<<ans<<endl;
}
cout<<ans<<endl;
}
}
2017 CCPC 杭州 HDU6265B 积性函数的更多相关文章
- bzoj2693--莫比乌斯反演+积性函数线性筛
推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...
- hdu1452 Happy 2004(规律+因子和+积性函数)
Happy 2004 题意:s为2004^x的因子和,求s%29. (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子 ...
- HDU 1452 Happy 2004 (逆元+快速幂+积性函数)
G - Happy 2004 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Subm ...
- spoj 3871. GCD Extreme 欧拉+积性函数
3871. GCD Extreme Problem code: GCDEX Given the value of N, you will have to find the value of G. Th ...
- POJ 2480 Longge's problem (积性函数,欧拉函数)
题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因 ...
- poj 2480 Longge's problem 积性函数
思路:首先给出几个结论: 1.gcd(a,b)是积性函数: 2.积性函数的和仍然是积性函数: 3.phi(a^b)=a^b-a^(b-1); 记 f(n)=∑gcd(i,n),n=p1^e1*p2^e ...
- HDU 1452 Happy 2004(因子和的积性函数)
题目链接 题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余. 思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细. 在非数论的领域,积性函数指所有对于任何a,b都 ...
- bzoj 2693: jzptab 线性筛积性函数
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 444 Solved: 174[Submit][Status][Discus ...
- HDU1452Happy 2004(高次幂取模+积性函数+逆元)
题目意思:2004^x的所有正因数的和(S)对29求余:输出结果: 原题链接 题目解析:解析参照来源:点击打开链接 因子和 6的因子是1,2,3,6; 6的因子和是s(6)=1+2+3+6=12; 2 ...
随机推荐
- 移动端如何定义字体font-family
移动端如何定义字体font-family 中文字体使用系统默认即可,英文用Helvetica /* 移动端定义字体的代码 */ body{font-family:Helvetica;} 参考<移 ...
- chart.js图表 传值问题
php: $json['status'] = ture; $json['list']=implode(',',$data); ...
- Java 线程实例 刷碗烧水和倒计时
线程——烧水刷碗和倒计时实例 (一)烧水刷碗 刷碗的同时烧水:下面是碗的程序: 下面是烧水的程序:在水的实现类中,调用了Thread线程,让烧水刷碗同时进行. 注意:刷碗2s一次,烧水10s (二)1 ...
- ES之事件绑定,解除绑定以及事件冒泡、事件捕获
绑定事件的处理方法任何元素都有事件属性,而绑定事件就是将这个事件与一个函数相连接. ①句柄事件dom.onXXX = function () {代码块} 以on开头的事件属于句柄事件兼容性非常好,但是 ...
- CCF|打酱油|Java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner in = ...
- emil 的使用
摘抄自别人 RFC882文档规定了如何编写一封简单的邮件(纯文本邮件),一封简单的邮件包含邮件头和邮件体两个部分,邮件头和邮件体之间使用空行分隔. 邮件头包含的内容有: from字段 --用于指明发 ...
- zabbix4.2学习笔记--监控nginx
图解一个客户端连接开源版本的Nginx情况 Accepts(接受).Handled(已处理).Requests(请求数)是一直在增加的计数器.Active(活跃).Waiting(等待).Readin ...
- MySQL操作数据库和表的基本语句(DDL)
1.创建数据库: CREATE DATABASE 数据库名; eg.CREATE DATABASE test_ddl;2.创建表 CREATE TABLE 表名(列名 数据类型 约束,...); eg ...
- 【原】tcpdump命令
1.常用参数总结 tcpdump tcpdump -i (网卡) tcpdump -nn (数字的方式显示IP和端口.一个n是ip) tcpdump -c x (抓包数量,x为数字) tcpd ...
- 第1节 hive安装:2、3、4、5、(多看几遍)
第1节 hive安装: 2.数据仓库的基本概念: 3.hive的基本介绍: 4.hive的基本架构以及与hadoop的关系以及RDBMS的对比等 5.hive的安装之(使用mysql作为元数据信息存储 ...