题目链接 http://acm.hdu.edu.cn/downloads/CCPC2018-Hangzhou-ProblemSet.pdf

B题 数论题      h(n)=∑ d|n φ(d) × n /d   求一个数的h值   我们只要意识到他是一个积性函数就解决了  这个函数看起来很像狄利克雷卷积 我们构造一个函数f(n)=n;h(n)=∑ d|n φ(d) × f(n /d)

欧拉函数φ是积性函数 构造的f是完全积性函数 所以他们的狄利克雷卷积h也是积性函数  然后推导一下答案就是 ∑(pi^qi+(pi-1)*qi*pi^(qi-1))  (1<=i<=m)

其实当你没有意识到他是一个积性函数    推导的时候也可以发现他可以用组合情况写   这就用到了子集生成知识了很简单一个dfs就可以了 m最大20 子集个数最大就是2^20 可以接受

然后枚举子集就可以得到结果了

关于  积性函数和狄利克雷卷积推荐几个博客  https://www.cnblogs.com/jianglangcaijin/p/6035766.html#undefined

                    https://blog.csdn.net/liyizhixl/article/details/79997478

                    https://www.cnblogs.com/wfj2048/p/6537861.html

积性函数性质

1.若n=pa11pa22pa33...pannn=p1a1p2a2p3a3...pnan,那么f(n)=f(pa11)f(pa22)f(pa33)...f(pann)f(n)=f(p1a1)f(p2a2)f(p3a3)...f(pnan)。
2.若ff为积性函数且有f(pn)=fn(p)f(pn)=fn(p),那么ff为完全积性函数。

狄利克雷卷积性质:

  1. (f∗g)=∑d|nf(d)g(nd)(f∗g)=∑d|nf(d)g(nd)
  2. f∗(g∗h)=(f∗g)∗hf∗(g∗h)=(f∗g)∗h
  3. f∗(g+h)=f∗g+f∗hf∗(g+h)=f∗g+f∗h
  4. f∗g=g∗f

位向量法子集生成模板 O(n*2^n)

 #include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+,M = ;
typedef long long ll;
int a[maxn],b[maxn];
void print_subset(int n, int b[],int cur)
{
if(cur==n)
{
for(int i=;i<cur;i++)
{
if(b[i])
printf("%d ",a[i]);
}
printf("\n");
return;
}
b[cur]=;
print_subset(n,b,cur+);
b[cur]=;
print_subset(n,b,cur+);
}
int main()
{
int n;
cin>>n;
for(int i=;i<n;i++)
a[i]=i+;
memcpy(b,a,sizeof(a));
print_subset(n,b,); //传参后会修改b的值 所以copy一个数组
}

AC代码

 #include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+ ,mod = ;
typedef long long ll;
ll poww(ll a,ll b)
{
ll ans=;
while(b>)
{
if(b&)
ans=(ans*a)%mod;
b=b>>;
a=(a*a)%mod;
}
return ans;
}
int main()
{
int t;
cin>>t;
while(t--)
{
ll q,p,ans=;
int m;
cin>>m;
while(m--)
{
cin>>p>>q;
ll temp=;
temp=(temp*(p-))%mod;
temp=(temp*q)%mod;
temp=(temp*poww(p,q-))%mod;
temp=(temp+poww(p,q))%mod;
ans=ans*temp%mod;
//cout<<ans<<endl;
}
cout<<ans<<endl;
}
}

2017 CCPC 杭州 HDU6265B 积性函数的更多相关文章

  1. bzoj2693--莫比乌斯反演+积性函数线性筛

    推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...

  2. hdu1452 Happy 2004(规律+因子和+积性函数)

    Happy 2004 题意:s为2004^x的因子和,求s%29.     (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子 ...

  3. HDU 1452 Happy 2004 (逆元+快速幂+积性函数)

    G - Happy 2004 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Subm ...

  4. spoj 3871. GCD Extreme 欧拉+积性函数

    3871. GCD Extreme Problem code: GCDEX Given the value of N, you will have to find the value of G. Th ...

  5. POJ 2480 Longge's problem (积性函数,欧拉函数)

    题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因 ...

  6. poj 2480 Longge's problem 积性函数

    思路:首先给出几个结论: 1.gcd(a,b)是积性函数: 2.积性函数的和仍然是积性函数: 3.phi(a^b)=a^b-a^(b-1); 记 f(n)=∑gcd(i,n),n=p1^e1*p2^e ...

  7. HDU 1452 Happy 2004(因子和的积性函数)

    题目链接 题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余. 思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细. 在非数论的领域,积性函数指所有对于任何a,b都 ...

  8. bzoj 2693: jzptab 线性筛积性函数

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 444  Solved: 174[Submit][Status][Discus ...

  9. HDU1452Happy 2004(高次幂取模+积性函数+逆元)

    题目意思:2004^x的所有正因数的和(S)对29求余:输出结果: 原题链接 题目解析:解析参照来源:点击打开链接 因子和 6的因子是1,2,3,6; 6的因子和是s(6)=1+2+3+6=12; 2 ...

随机推荐

  1. php数组转为字符串,数据库存储

    php对象转字符存储数据库的方法. 总所周知对象是不能直接存储到数据库的.那么我们用什么样的方法能够存储到数据库中能? 方法一:序列化serialize和unserialize 序列化对象serial ...

  2. AJPFX总结正则表达式的概述和简单使用

    正则表达式的概述和简单使用* A:正则表达式        * 是指一个用来描述或者匹配一系列符合某个语法规则的字符串的单个字符串.其实就是一种规则.有自己特殊的应用.        * 作用:比如注 ...

  3. iOS---UICollectionView自定义流布局实现瀑布流效果

    自定义布局,实现瀑布流效果 自定义流水布局,继承UICollectionViewLayout 实现一下方法 // 每次布局之前的准备 - (void)prepareLayout; // 返回所有的尺寸 ...

  4. 从0开始搭建SQL Server 2012 AlwaysOn 第三篇(安装数据,配置AlwaysOn)

    这一篇是从0开始搭建SQL Server 2012 AlwaysOn 的第三篇,这一篇才真正开始搭建AlwaysOn,前两篇是为搭建AlwaysOn 做准备的 操作步骤: 1.安装SQL server ...

  5. 关于mapState和mapMutations和mapGetters 和mapActions辅助函数的用法及作用(一)-----mapState

    一.通过mapState函数的对象参数来赋值: <p>{{ count }}</p> <p>{{ count1 }}</p> <p>{{ c ...

  6. struts2通过配置文件进行数据校验无效

    网络搜集常见解决方案: 1. 首先应该注意validation.xml的名字,一定要以Action的类名加“-validation.xml”作为文件名,如LoginAction-validation. ...

  7. (转)淘淘商城系列——分布式文件系统FastDFS

    http://blog.csdn.net/yerenyuan_pku/article/details/72801777 商品添加的实现,包括商品的类目选择,即商品属于哪个分类?还包括图片上传,对于图片 ...

  8. cesium 原理 之 command拼接

    VAO VAO(Vertext Array Object),中文是顶点数组对象.之前在<Buffer>一文中,我们介绍了Cesium如何创建VBO的过程,而VAO可以简单的认为是基于VBO ...

  9. Hadoop推测执行机制问题

    问题描述:MultipleOutputs使用时hdfs报错         // :: INFO mapreduce.Job: Task Id : attempt_1525336138932_1106 ...

  10. eclipse如何导出WAR包

    WAR包是用于将java项目部署在中间件上的,例如部署在Tomcat,Weblogic,WebSphere等等,那么如何使用eclipse导出WAR包呢? 工具/原料 eclipse 方法/步骤   ...