Tactical Multiple Defense System

Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

This problem is about a war game between two countries. To protect a base, your country built a defense system called “Tactical Multiple Defense System” (TMD system in short). There are two weapons in the TMD system: Line gun and Circle gun. The Line gun can in one shot destroy all targets whose (two-dimensional) coordinates are on the same ray from the base, and the Circle gun can in one shot destroy all the targets with the same distance to the base. Note that in this game the coordinate of the base is (0, 0). The other country is going to attack the base of your country. They deploy missiles at some places according to their “National Missile Deployment Plan” (NMD plan). Your spy got the NMD plan and therefore you have the positions of all the missiles, which are the targets you need to destroy. As the commander of the TMD system, your mission is to determine how to destroy all the n missiles by Line gun and Circle gun with minimum number of total shots. The position Pi of a missile is given by three positive integers ri , si , ti which indicates the polar coordinate is (ri , arctan(ti/si)), i.e., the distance from the base to Pi is ri and the slope of the ray from the base and through Pi is ti/si . We shall say that Pi is on the ray of slope ti/si . To use the Line gun, you input two integer parameters t and s, press the fire button, and then it destroys all targets (missiles) on the ray of slope t/s. On the other hand, to use the Circle gun, you need to input a positive integer parameter r, and it can destroy all targets with distance r to the base, that is, it destroys targets exactly on the circle of radius r (but not the ones within the circle). Figure 8 illustrates some examples.

Technical Specification

• The number of missiles n is at most 20000 in each test case. It is possible that two missiles are at the same position.

• The three parameters (ri , si , ti) of each position are integers and satisfy 1000 < ri ≤ 6000 and 1 ≤ si , ti ≤ 10000. Input The first line contains an integer T indicating the number of test cases. There are at most 10 test cases. For each test case, the first line is the number of missiles n. Each of the next n lines contains the parameters ri , si , ti of one missile, and two consecutive integers are separated by a space.

Input

The first line contains an integer T indicating the number of test cases. There are at most 10 test cases. For each test case, the first line is the number of missiles n. Each of the next n lines contains the parameters ri , si , ti of one missile, and two consecutive integers are separated by a space.

Output

For each test case, output in one line the minimum number of shots to destroy all the missiles.

Sample Input

1

5

1010 1 2

1020 2 4

1030 3 6

1030 9 9

1030 9 1

Sample Output

2

解题:最大匹配

 #include <bits/stdc++.h>
using namespace std;
const int maxn = ;
unordered_map<int,int>imp;
unordered_map<double,int>dmp;
vector<int>g[maxn];
int a,b,R[maxn],Link[maxn];
double slop[maxn];
bool used[maxn];
bool match(int u){
for(int i = g[u].size()-; i >= ; --i){
if(used[g[u][i]]) continue;
used[g[u][i]] = true;
if(Link[g[u][i]] == - || match(Link[g[u][i]])){
Link[g[u][i]] = u;
return true;
}
}
return false;
}
int main(){
int kase,n,s,t;
scanf("%d",&kase);
while(kase--){
scanf("%d",&n);
imp.clear();
dmp.clear();
for(int i = ; i < maxn; ++i) {g[i].clear();Link[i] = -;}
for(int i = a = b = ; i < n; ++i){
scanf("%d%d%d",R + i,&s,&t);
if(imp[R[i]] == ) imp[R[i]] = ++a;
slop[i] = atan2(t,s);
if(dmp[slop[i]] == ) dmp[slop[i]] = ++b;
g[imp[R[i]]].push_back(dmp[slop[i]]);
}
int ret = ;
for(int i = ; i <= a; ++i){
memset(used,false,sizeof used);
if(match(i)) ++ret;
}
printf("%d\n",ret);
}
return ;
}

UVALive 7008 Tactical Multiple Defense System的更多相关文章

  1. Tactical Multiple Defense System 二分图

    This problem is about a war game between two countries. To protect a base, your country built a defe ...

  2. Method and apparatus for providing total and partial store ordering for a memory in multi-processor system

    An improved memory model and implementation is disclosed. The memory model includes a Total Store Or ...

  3. PatentTips - Modified buddy system memory allocation

    BACKGROUND Memory allocation systems assign blocks of memory on request. A memory allocation system ...

  4. General-Purpose Operating System Protection Profile

    1 Protection Profile Introduction   This document defines the security functionality expected to be ...

  5. Uniform synchronization between multiple kernels running on single computer systems

    The present invention allocates resources in a multi-operating system computing system, thereby avoi ...

  6. UNIX标准及实现

    UNIX标准及实现 引言     在UNIX编程环境和C程序设计语言的标准化方面已经做了很多工作.虽然UNIX应用程序在不同的UNIX操作系统版本之间进行移植相当容易,但是20世纪80年代UNIX版本 ...

  7. .NET中RabbitMQ的使用

    概述 MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法.RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统.他遵循Mozilla Public ...

  8. POJ 3714 Raid

    Description After successive failures in the battles against the Union, the Empire retreated to its ...

  9. POJ3714 Raid

    Raid Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 10625   Accepted: 3192 Description ...

随机推荐

  1. bzoj 1925: [Sdoi2010]地精部落【dp】

    设[f[i][j]为1到i,开头数字是j并且是山峰的方案数 注意到当数字j和j-1不相邻时,交换它们会得到一个新的符合要求的序列,所以f[i][j]+=f[i][j-1]; 如果相邻,那么j是山峰,j ...

  2. hdu4738(边双连通分量,桥)

    Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. Asp.NET 知识点总结(二)

    1.两个对象值相同(x.equals(y) == true),但却可有不同的hash code,这句话对不对? 答:不对,有相同的 hash code 编码格式. 2.swtich是否能作用在byte ...

  4. HDU 5514 欧拉函数应用

    前置技能: <=i且与i互质的数的和是phi(i)*i/2 思路: 显然每个人的步数是gcd(a[i],m) 把m的所有因数预处理出来 1~m-1中的每个数 只会被gcd(m,i)筛掉一遍 // ...

  5. ViewPager(4)用viewpager实现splash view

    1,示例 2,代码 SplashMain.java import android.os.Bundle; import android.support.v4.app.Fragment; import a ...

  6. 【URL重写】IIS7配置URL重写

    URL Rewrite Module   此模块适用于IIS7.7.5.8. 微软在IIS7中添加了URL的重写模块,并且免费使用,可以导入.htaccess规则,但需要安装. 第一步:安装URL2. ...

  7. FCC 基础JavaScript 练习2

    1. 引号不是字符串中唯一的可以被转义字符.下面是常见的转义序列列表: \'  单引号 \" 双引号 \\ 反斜杠符 \n 换行符 \r 回车符 \t 制表符 \b 退格符 \f  换页符 ...

  8. 我发现了新大陆--python的嵌入式开发

    接上篇的文章,固件什么的都调试的很舒服,我突然发现了一个很好的网站,他是卖python开发板的,但是我从中窃取了很多宝贝,太舒服了! 不得不说,这个网站做的已经相当漂亮了,而且资料都是开放的,大爱! ...

  9. quartz在集群环境下的最终解决方案

    在集群环境下,大家会碰到一直困扰的问题,即多个 APP 下如何用 quartz 协调处理自动化 JOB . 大家想象一下,现在有 A , B , C3 台机器同时作为集群服务器对外统一提供 SERVI ...

  10. Ngnix SSL配置(HTTP、HTTPS兼容)

    一.使用阿里云提供证书 下载aliyun证书for Nginx,解压出两个文件,.pem和.key文件 在nginx安装目录Conf文件夹下新建cert文件夹,拷贝两个密钥文件 二.配置nginx 打 ...