bzoj 3513: [MUTC2013]idiots【生成函数+FFT】
想了好长时间最后发现真是石乐志
第一反应就是两边之和大于第三边,但是这个东西必须要满足三次……
任意的两边之和合通过生成函数套路+FFT求出来(记得去掉重复选取的),然后这任意两边之和大于任意第三边可以用一个前缀和求得(同样记得去重,前缀和里面一定包含前两条边),这样我们就得到了任意两边之和大于任意第三边的组数(这里是算顺序的,(1,2,3)(2,1,3)要算两遍)
然后考虑任意选三条边方案数(算顺序),是\( 6*C_n^3\ \),注意到不符合要求的三条边一定是满足两次两边之和大于第三边的,所以(总方案数-任意两边之和大于任意第三边的组数)/2就是不合法的三条边方案数(不算顺序),然后也就能得到合法的三条边方案数(不算顺序)了
然后除掉总方案数就是概率
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
const int N=300005;
int T,n,m,q[N],bt,lm,re[N],s[N];
long long ans;
struct cd
{
long double a,b;
cd(long double A=0,long double B=0)
{
a=A,b=B;
}
cd operator + (const cd &x) const
{
return cd(a+x.a,b+x.b);
}
cd operator - (const cd &x) const
{
return cd(a-x.a,b-x.b);
}
cd operator * (const cd &x) const
{
return cd(a*x.a-b*x.b,a*x.b+b*x.a);
}
}a[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void dft(cd a[],int f)
{
for(int i=0;i<lm;i++)
if(i<re[i])
swap(a[i],a[re[i]]);
for(int i=1;i<lm;i<<=1)
{
cd wi=cd(cos(M_PI/i),f*sin(M_PI/i));
for(int k=0;k<lm;k+=(i<<1))
{
cd w=cd(1,0),x,y;
for(int j=0;j<i;j++)
{
x=a[j+k],y=w*a[i+j+k];
a[j+k]=x+y,a[i+j+k]=x-y;
w=w*wi;
}
}
}
if(f==-1)
for(int i=0;i<lm;i++)
a[i].a/=lm;
}
int main()
{
T=read();
while(T--)
{
memset(s,0,sizeof(s));
memset(a,0,sizeof(a));
m=0;
n=read();
for(int i=1;i<=n;i++)
q[i]=read(),s[q[i]]++,a[q[i]].a+=1,m=max(m,q[i]);
for(int i=1;i<=m*2;i++)
s[i]+=s[i-1];
for(bt=0;(1<<bt)<=2*m;bt++);
lm=(1<<bt);
for(int i=0;i<lm;i++)
re[i]=(re[i>>1]>>1)|((i&1)<<(bt-1));
dft(a,1);
for(int i=0;i<lm;i++)
a[i]=a[i]*a[i];
dft(a,-1);
for(int i=1;i<=n;i++)
a[q[i]+q[i]].a-=1;
ans=1ll*n*(n-1)*(n-2);
for(int i=1;i<=2*m;i++)
ans-=(long long)(a[i].a+0.5)*(s[i-1]-2);//cerr<<ans<<endl;
ans=1ll*n*(n-1)*(n-2)/6-ans/2;//cerr<<ans<<endl;
printf("%.7Lf\n",(long double)ans*6/(long double)n/(long double)(n-1)/(long double)(n-2));
}
return 0;
}
bzoj 3513: [MUTC2013]idiots【生成函数+FFT】的更多相关文章
- bzoj 3513: [MUTC2013]idiots FFT
bzoj 3513: [MUTC2013]idiots FFT 链接 bzoj 思路 参考了学姐TRTTG的题解 统计合法方案,最后除以总方案. 合法方案要不好统计,统计不合法方案. \(a+b< ...
- BZOJ 3513: [MUTC2013]idiots
3513: [MUTC2013]idiots Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 476 Solved: 162[Submit][Stat ...
- bzoj 3513 [MUTC2013]idiots FFT 生成函数
[MUTC2013]idiots Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 806 Solved: 265[Submit][Status][Di ...
- 【刷题】BZOJ 3513 [MUTC2013]idiots
Description 给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率. Input 第一行T(T<=100),表示数据组数. 接下来若干行描述T组数据,每组数据第一行是 ...
- 2019.01.02 bzoj3513: [MUTC2013]idiots(fft)
传送门 fftfftfft经典题. 题意简述:给定nnn个长度分别为aia_iai的木棒,问随机选择3个木棒能够拼成三角形的概率. 思路:考虑对于木棒构造出生成函数然后可以fftfftfft出两个木 ...
- bzoj 3771: Triple【生成函数+FFT+容斥原理】
瞎搞居然1A,真是吃鲸 n的范围只有聪明人能看见--建议读题3遍 首先看计数就想到生成函数,列出多项式A(x),然后分别考虑123 对于选一个的直接计数即可: 对于选两个的,\( A(x)^2 \), ...
- bzoj千题计划168:bzoj3513: [MUTC2013]idiots
http://www.lydsy.com/JudgeOnline/problem.php?id=3513 组成三角形的条件:a+b>c 其中,a<c,b<c 若已知 两条线段之和=i ...
- loj6570 毛毛虫计数(生成函数FFT)
link 巨佬olinr的题解 <-- olinr很强 考虑生成函数 考虑直径上点数>=4的毛毛虫的直径,考虑直径中间那些节点以及他上面挂的那些点的EGF \(A(x)=\sum_{i\g ...
- [BZOJ 3456]城市规划(cdq分治+FFT)
[BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量 ...
随机推荐
- CMS - 认识目录
Tips:如果网页图片(文字)看不清,请按CTRL+鼠标滚轮 一个完整的小程序模板目录结构如下! 本章节给出的建议: 1.推荐使用flex布局 2.其它图片路径建议引入网络路径(tabBar不支持网络 ...
- 玩转Bash脚本:循环结构之while循环(转)
转自:http://blog.csdn.net/guodongxiaren/article/details/43341769 总第8篇 本系列(玩转Bash脚本)更多文章,请访问:http://b ...
- android 自己定义控件
Android自己定义View实现非常easy 继承View,重写构造函数.onDraw.(onMeasure)等函数. 假设自己定义的View须要有自己定义的属性.须要在values下建立attrs ...
- 在OpenStack中绕过或停用security group (iptables)
眼下.OpenStack中默认採用了security group的方式.用系统的iptables来过滤进入vm的流量.这个本意是为了安全,可是往往给调试和开发带来一些困扰. 因此,暂时性的禁用它能够排 ...
- Entity Framework 6 Code First 实践系列(1):实体类配置-根据依赖配置关系和关联
EF实体类的配置可以使用数据注释或Fluent API两种方式配置,Fluent API配置的关键在于搞清实体类的依赖关系,按此方法配置,快速高效合理.为了方便理解,我们使用简化的实体A和B以及A.B ...
- BZOJ 2115: [Wc2011] Xor DFS + 线性基
2115: [Wc2011] Xor Time Limit: 10 Sec Memory Limit: 259 MB Description Input 第一行包含两个整数N和 M, 表示该无向图中 ...
- CentOS笔记-目录结构(转载了菜鸟教程里的)
在linux系统中,有几个目录是比较重要的,平时需要注意不要误删除或者随意更改内部文件. /etc: 上边也提到了,这个是系统中的配置文件,如果你更改了该目录下的某个文件可能会导致系统不能启动. /b ...
- virtualbox创建centos7虚拟机
安装Virtualbox 下载安装: 直接到官网上下载,https://www.virtualbox.org/wiki/Downloads 然后一键傻瓜式的安装即可. 设置默认虚拟电脑位置: 管理=& ...
- C语言中的声明与定义的差别
1.对于以下的声明语句 int a; 假设其位置出如今全部的函数体之外,那么它就被称为外部对象a的定义.这个语句说明了a是一个外部整型变量,同一时候为a分配了存储空间.由于外部对象a并没 ...
- 关于UISearchBar
iPhone开发之UISearchBar学习是本文要学习的内容,主要介绍了UISearchBar的使用,不多说,我们先来看详细内容.关于UISearchBar的一些问题. 1.修改UISearchBa ...