\(\\\)

\(Description\)


给出一棵以\(1\)为根的\(N\)个节点的树,开始的时候你在\(1\)号节点。

除了\(1\)号节点以外,每个点都有访问次数限制\(t_i\),即到达该点的次数上限。

除了\(1\)号点每个点还有一个权值\(w_i\),这个权值可以是负的,每个点被第一次到达时你会被迫得到他的点权,以后该点点权变为\(0\)。

求满足所有次数上限的前提下,从\(1\)号点出发,最后回到\(1\)号点的一条路径所得到的最大点权和,每个点可以经过多次。

同时你还要输出这个最大点权和对应的方案是否唯一。

  • \(N\in [1,10^5]\)

\(\\\)

\(Solution\)


  • 第一问直接树形\(DP\)就好,从根节点到当前点的路径会消耗一次当前点的访问次数,而每次从子树回溯上来也会消耗一次访问次数,所以对于节点\(u\),最多只能选\(t_u-1\)棵子树访问。直接\(DFS\)后将子树最大贡献排序,在所有正数答案里选前\(t_u-1\)个子树作为自己的答案。

  • 关于方案唯一性的问题,维护一个\(g\)数组表示当前节点最优解是否唯一。转移时只要有一个子树方案数有多种当前节点的方案数就是多种。同时如果下一个要选择的子树(因为访问上限的关系不能选)和当前最后一个选择的子树答案相同,或者答案中选择了包含贡献为\(0\)的子树,方案也不是唯一的。

\(\\\)

\(Code\)


#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 100010
#define R register
#define gc getchar
#define inf 200000000
using namespace std; inline int rd(){
int x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
} bool g[N];
int n,m,tot,hd[N];
int t[N],f[N],val[N],tmp[N]; struct edge{int to,nxt;}e[N<<1]; inline void add(int u,int v){
e[++tot].to=v; e[tot].nxt=hd[u]; hd[u]=tot;
} inline bool cmp(int x,int y){return f[x]>f[y];} void dfs(int u,int fa){
f[u]=val[u];
for(R int i=hd[u],v;i;i=e[i].nxt) if((v=e[i].to)!=fa) dfs(v,u);
tmp[0]=0;
for(R int i=hd[u],v;i;i=e[i].nxt) if((v=e[i].to)!=fa) tmp[++tmp[0]]=v;
sort(tmp+1,tmp+1+tmp[0],cmp);
int ptr=1,lim=min(tmp[0],t[u]-1);
while(ptr<=lim&&f[tmp[ptr]]>=0) f[u]+=f[tmp[ptr]],g[u]|=g[tmp[ptr]],++ptr;
if((ptr<=tmp[0]&&ptr>1&&f[tmp[ptr]]==f[tmp[ptr-1]])||(f[tmp[ptr-1]]==0&&ptr>1)) g[u]=1;
} int main(){
n=rd();
for(R int i=2;i<=n;++i) val[i]=rd();
for(R int i=2;i<=n;++i) t[i]=rd();
for(R int i=1,u,v;i<n;++i){
u=rd(); v=rd(); add(u,v); add(v,u);
}
val[1]=0; t[1]=inf; dfs(1,0);
printf("%d\n",f[1]);
puts(g[1]?"solution is not unique":"solution is unique");
return 0;
}

[ JSOI 2015 ] Salesman的更多相关文章

  1. [JSOI 2015] 最大公约数

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=4488 [算法] 不妨首先枚举左端点 注意到对于任意一个正整数n , 其质因子个数是l ...

  2. [JSOI 2015] 子集选取

    4475: [Jsoi2015]子集选取 Time Limit: 1 Sec  Memory Limit: 512 MBSubmit: 363  Solved: 255[Submit][Status] ...

  3. bzoj 4481 [ Jsoi 2015 ] 非诚勿扰 —— 期望

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4481 太弱了这种题都要看半天TJ...:https://blog.csdn.net/chai ...

  4. 送礼物「JSOI 2015」RMQ+01分数规划

    [题目描述] 礼品店一共有N件礼物排成一列,每件礼物都有它的美观度.排在第\(i(1\leq i\leq N)\)个位置的礼物美观度为正整数\(A_I\).JYY决定选出其中连续的一段,即编号为礼物\ ...

  5. JSOI 2015 送礼物

    [BZOJ4476] [JSOI2015]送礼物 Description JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店很神奇,所有出售的礼物都按照特定的顺序都 ...

  6. GDOI#345. 送礼物「JSOI 2015」01分数规划+RMQ

    题目描述 JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物.萌萌的礼品店很神奇,所有出售的礼物都按照特定的顺序都排成一列,而且相邻的礼物之间有一种神秘的美感.于是,JYY决定从中 ...

  7. JSOI BZOJ4472 salesman

    题目传送门 题目大意 某售货员小T要到若干城镇去推销商品,由于该地区是交通不便的山区,任意两个城镇之间都只有唯一的可能经过其它城镇的路线. 小T 可以准确地估计出在每个城镇停留的净收益.这些净收益可能 ...

  8. 【树形DP】JSOI BZOJ4472 salesman

    题目内容 vjudge链接 某售货员小T要到若干城镇去推销商品,由于该地区是交通不便的山区,任意两个城镇 之间都只有唯一的可能经过其它城镇的路线. 小T 可以准确地估计出在每个城镇停留的净收 益.这些 ...

  9. [Luogu 3794]签到题IV

    Description 题库链接 给定长度为 \(n\) 的序列 \(A\).求有多少子段 \([l,r]\) 满足 \[ \left(\gcd_{l\leq i\leq r}A_i\right) \ ...

随机推荐

  1. Windows学习总结(10)——Windows系统中常用的CMD命令详解

    1.ping命令 ping是电脑网络故障诊断中的常用的命令,它的作用是用来检查网络是否通畅或者网络连接速度.我们来看一下PING命令的具体表述. 日常的诊断过程中我们最常用到的就是诊断连接是否通畅. ...

  2. 《Spring in action》之Spring之旅

    Spring框架作用是简化java开发的复杂性.下面是spring in action 对spring初步介绍. 一.主要有4种关键策略: 1. 基于POJO的轻量级和最小侵入性编程 . 2. 通过依 ...

  3. python实现汉诺塔算法

    汉诺塔 算法分析 1.步骤1:如果是一个盘子,直接将a柱子上的盘子从a移动到c 否则 2.步骤2:先将A柱子上的n-1个盘子借助C移动到B(图1) 已知函数形参为hanoi(n,a,b,c),这里调用 ...

  4. SiteMesh2-示例工程

    了解SiteMesh的最佳方法是使用它.假设SiteMesh设置在您的Web应用程序中,本教程将展示如何掌握SiteMesh最强大的方面,如下所示装饰页面: 效果发生在第2步,其中Menu.jsp页面 ...

  5. 解决canvas跨域问题(图片,视频资源跨域)

    添加跨域条件   crossorigin="anonymous" [Redirect at origin 'http://xxx.xx.com' has been blocked ...

  6. [Vue-rx] Watch Vue.js v-models as Observable with $watchAsObservable and RxJS

    You most likely already have data or properties in your template which are controlled by third-party ...

  7. GRANT 授权

    sys(管理员)身份登录.创建usernamezsta_new create user zsta_new   identified by password   default tablespace Z ...

  8. HDOJ题目4417 Super Mario(划分树求区间比k小的个数+二分)

    Super Mario Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  9. Android面试题1

    1.Android中intent的是? 答:实现界面间的切换,能够包括动作和动作数据.连接四大组件的纽带. 2.SAX解析xml文件的长处的是? 答:不用事先调入整个文档,占用资源少 3.在andro ...

  10. Redux 源码解读--createStore,js

    一.依赖:$$observable.ActionTypes.isPlainObject 二.接下来看到直接 export default 一个 createStore 函数,下面根据代码以及注释来分析 ...