发现每张卡牌最后起到作用只和是否打出去了有关。

而且每张牌打出去的概率和之前的牌打出去的情况有关。

所以我们按照牌的顺序进行DP。

然后记录$i$张牌中打出$j$张的概率,然后顺便统计答案。

直接对系数进行DP即可。

复杂度$\Theta(NTR)$

#include <map>
#include <ctime>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i) double f[250][250],p[250],d[250],ans;
int t,n,r; double ksm(double a,int b)
{
double ret=1.0;
for (;b;a*=a,b>>=1) if (b&1) ret*=a;
return ret;
} int main()
{
scanf("%d",&t);
while (t--)
{
scanf("%d%d",&n,&r); ans=0;
F(i,1,n) scanf("%lf%lf",&p[i],&d[i]);
F(i,1,n) F(j,1,min(n,r)) f[i][j]=0; f[0][0]=1;
F(i,1,n)
{
f[i][0]=f[i-1][0]*ksm(1-p[i],r);
F(j,1,min(n,r))
{
f[i][j]=f[i-1][j-1]*(1-ksm(1-p[i],r-j+1))
+f[i-1][j]*ksm(1-p[i],r-j);
ans+=f[i-1][j-1]*(1-ksm(1-p[i],r-j+1))*d[i];
}
}
// F(i,1,n)F(j,0,n){printf("%.10f%c",f[i][j],j==n?'\n':' ');}
printf("%.10f\n",ans);
}
}

  

BZOJ [HNOI2015]亚瑟王 ——期望DP的更多相关文章

  1. P3239 [HNOI2015]亚瑟王 期望dp

    这个题一看就是期望dp,但是我有个问题,一个事件的期望等于他所有事件可能行乘权值的和吗...为什么我有天考试的时候就不对呢...求大佬解释一下. 至于这道题,f[i][j]代表前i个有j个发动技能,这 ...

  2. P3239 [HNOI2015]亚瑟王 期望 dp

    LINK:亚瑟王 Saber!Excalibur! 比较难的期望dp. 可以发现如果暴力枚举所有的局面复杂度很高 . 转换的思路则是 期望的线性性. 求出每张牌的期望累加即可. 考虑每张牌的期望=这张 ...

  3. BZOJ4008: [HNOI2015]亚瑟王(期望dp)

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 1952  Solved: 1159[Submit][Status] ...

  4. 洛谷 P3239 [HNOI2015]亚瑟王(期望dp)

    题面 luogu 题解 一道复杂的期望\(dp\) 思路来源:__stdcall 容易想到,只要把每张牌打出的概率算出来就可以求出\(ans\) 设\(fp[i]\)表示把第\(i\)张牌打出来的概率 ...

  5. [HNOI2015]亚瑟王(期望+DP)

    题解 利用期望的线性性,可以把问题转化为求每一个卡牌造成期望的期望值. 然后我们就需要知道每一个卡牌发动技能的概率. 因为当某一张卡牌发动技能时这一轮会结束,这就很难直接计算了. 我们使用DP 设dp ...

  6. [HNOI2015]亚瑟王[期望DP]

    也许更好的阅读体验 \(\mathcal{Description}\) 给出\(n\)个技能,每个技能按输入顺序有\(p[i]\)的概率释放并造成\(d[i]\)的伤害.每轮游戏从前往后顺序查看每个技 ...

  7. bzoj[HNOI2015]亚瑟王 - 递推与动规 - 概率与期望

    [bzoj4008][HNOI2015]亚瑟王 2015年4月22日3,2991 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之 ...

  8. 【BZOJ4008】[HNOI2015]亚瑟王 期望

    [BZOJ4008][HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最 ...

  9. 【BZOJ4008】【HNOI2015】亚瑟王 [期望DP]

    亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 小 K 不慎被 LL 邪教洗脑了,洗 ...

随机推荐

  1. android布局带参返回

    package com.lxj.lesson2_3ID19; import com.example.lesson2_3_id19.R; import com.lxj.other.AgeActivity ...

  2. 阻止除root外的其他用户登录

    在对系统进行某些更新时,你可能不希望用户登录,这时可以使用/ e t c / n o l o g i n文件,大多数系统都提供这个文件.一旦在/ e t c目录中使用t o u c h命令创建了一个名 ...

  3. EJB2.0教程 详解EJB技术及实现原理

    EJB是什么呢?EJB是一个J2EE体系中的组件.再简单的说它是一个能够远程调用的javaBean.它同普通的javaBean有两点不同.第一点,就是远程调用.第二点,就是事务的功能,我们在EJB中声 ...

  4. Django 表增加外键

    1.创建临时表,并把原表的数据复制到临时表 先根据python manage syl article查看创建临时表 CREATE TABLE `article_article_temp` ( `id` ...

  5. MySQL报错竞技赛

    以下报错,我几乎没出过几个. ERROR 2 系统找不到文件: mysql-5.6.1X默认的配置文件是在C:\Program Files\MySQL\MySQL Server 5.6\my-defa ...

  6. CSS声明各个浏览器私有属性的命名前缀

    -moz代表firefox浏览器私有属性-ms代表IE浏览器私有属性-webkit代表chrome.safari私有属性-o代表opera私有属性

  7. class extension、class category、class-continuation category

    class extension Objective-C 2.0增加了class extensions用于解决两个问题: 允许一个对象可以拥有一个私有的interface,且可由编译器验证. 支持一个公 ...

  8. c++ 读取一行的2个数

    #include <iostream> using namespace std; double harmonicMean(double x, double y); int main() { ...

  9. minGw64编译Qt时遇到too many sections问题

    minGw64编译Qt时遇到too many sections问题: 修改\Src\qtbase\mkspecs\win32-g++\qmake.conf中 QMAKE_CFLAGS         ...

  10. CentOS7支持中文显示

    1.查看系统是否安装有中文语言包 locale -a | grep "zh_CN"     命令含义:列出所有可用的公共语言环境的名称,包含有"zh_CN" 若 ...