题目

给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。

输入格式

输入文件中仅包含一行两个整数a、b,含义如上所述。

输出格式

输出文件中包含一行10个整数,分别表示0-9在[a,b]中出现了多少次。

输入样例

1 99

输出样例

9 20 20 20 20 20 20 20 20 20

提示

30%的数据中,a<=b<=10^6;

100%的数据中,a<=b<=10^12。

题解

你以为我真的会写数位dp?

首先容斥一下,转化为求小于等于n的方案数

如果不考虑前缀0,那么就只需要递归处理不大于n所有数字出现的次数

考虑前缀0,我们再减去开头有若干个0的方案数

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 15,maxm = 100005,INF = 1000000000;
LL g[maxn],Pow[maxn];
void init(){
Pow[0] = 1;
for (int i = 1; i < maxn; i++) Pow[i] = Pow[i - 1] * 10;
g[1] = 1;
for (int i = 2; i < maxn; i++){
g[i] = 10 * g[i - 1] + Pow[i - 1];
}
}
struct node{
LL t[10];
node(){memset(t,0,sizeof(t));}
};
node cal(LL n,LL h,LL tmp){
//cout << n << endl;
node re,t;
if (h == 1){
for (int i = 0; i <= n; i++) re.t[i] = 1;
return re;
}
for (int i = 0; i <= 9; i++){
re.t[i] += (n / tmp) * g[h - 1];
if (i < n / tmp) re.t[i] += Pow[h - 1];
}
re.t[n / tmp] += n - (n / tmp) * tmp + 1;
t = cal(n % tmp,h - 1,tmp / 10);
for (int i = 0; i <= 9; i++) re.t[i] += t.t[i];
return re;
}
node solve(LL n){
LL h = 1,tmp = 1;
for (LL i = n; i / 10; i /= 10) h++,tmp *= 10;
node re = cal(n,h,tmp);
for (int i = 1; i < h; i++){
re.t[0] -= Pow[h - i];
}
return re;
}
int main(){
init();
LL a,b;
cin >> a >> b;
node ansr = solve(b),ansl = solve(a - 1);
for (int i = 0; i < 9; i++) printf("%lld ",ansr.t[i] - ansl.t[i]);
printf("%lld",ansr.t[9] - ansl.t[9]);
return 0;
}

BZOJ1833 [ZJOI2010]count 数字计数 【数学 Or 数位dp】的更多相关文章

  1. BZOJ1833 ZJOI2010 count 数字计数 【数位DP】

    BZOJ1833 ZJOI2010 count 数字计数 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包 ...

  2. [BZOJ1833][ZJOI2010]count 数字计数

    [BZOJ1833][ZJOI2010]count 数字计数 试题描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入 输入文件中仅包含一行两个整数a ...

  3. bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

    1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...

  4. bzoj1833: [ZJOI2010]count 数字计数 && codevs1359 数字计数

    bzoj1833 codevs1359 这道题也是道数位dp 因为0有前导0这一说卡了很久 最后发现用所有位数减1~9的位数就okay.....orzczl大爷 其他就跟51nod那道统计1出现次数一 ...

  5. bzoj1833: [ZJOI2010]count 数字计数 数位dp

    bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...

  6. [bzoj1833][ZJOI2010]count 数字计数——数位dp

    题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...

  7. bzoj1833: [ZJOI2010]count 数字计数&&USACO37 Cow Queueing 数数的梦(数位DP)

    难受啊,怎么又遇到我不会的题了(捂脸) 如题,这是一道数位DP,随便找了个博客居然就是我们大YZ的……果然nb,然后就是改改模版++注释就好的了,直接看注释吧,就是用1~B - 1~A-1而已,枚举全 ...

  8. 【数位dp】bzoj1833: [ZJOI2010]count 数字计数

    数位dp姿势一直很差啊:顺便庆祝一下1A Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a ...

  9. [BZOJ1833][ZJOI2010]Count数字计数(DP)

    数位DP学傻了,怎么写最后都写不下去了. 这题严格上来说应该不属于数位DP?只是普通DP加上一些统计上的判断吧. 首先复杂度只与数的位数$\omega$有关,所以怎么挥霍都不会超. f[i][j][k ...

随机推荐

  1. css绝对定位元素实现居中的几个方法

    一:CSS绝对定位元素left设为50%实现水平居中 绝对定位的元素left设为50%时,是已左上角为原点的,所以只要再使用margin属性添加负值补偿回来即可.示例:[css]代码如下: #boar ...

  2. C++拾遗(一)——变量和基本类型

    今天看到一个小小的算法,交换两个数却不引入中间变量,想了下没什么思路.看了答案是这样: int a, b; a = a + b; b = a - b; a = a - b; 感觉还是挺有想法的,借此也 ...

  3. 当ThreadLocal碰上线程池

    ThreadLocal使用 ThreadLocal可以让线程拥有本地变量,在web环境中,为了方便代码解耦,我们通常用它来保存上下文信息,然后用一个util类提供访问入口,从controller层到s ...

  4. 高效vim插件

    目录[-] 高效vim插件 插件管理利器 高效插件集 NerdTree snipMate tagbar jedi-vim eclim c.vim vim-colorschemes vim配置 一个实例 ...

  5. SpringMVC、Spring和Struts的区别

    http://www.cnblogs.com/hhx626/p/6010293.html 导读:近期做到的项目中,用到的框架师SSM(SpringMVC+Spring+Mybatis),那么在这之前用 ...

  6. 安装PIL报错解析

    开始安装PIL PIL只支持到python2.7,我安装的是python3.6版本,所以  不支持,报错 需要下载支持自己版本的包,下载地址https://www.lfd.uci.edu/~gohlk ...

  7. JAVA中IP和整数相互转化(含有掩码的计算)

    import java.net.InetAddress;/** * 用于IP和整数之间的相互转换 * @author Andy.Wang * */public class IPv4Util {    ...

  8. SpringBoot入门,新建SpringBoot项目

    一.在Spring Initializr中创建初始化项目 https://start.spring.io/ 二.通过maven导入Idea中(解压后的项目) 解压文件 黄色的为项目需要的真正的代码 , ...

  9. java运行环境jdk的安装和环境变量的配置教程

    jdk的下载与安装 一.官网下载jdk 1.百度搜索jdk,进入官网,如下图所示: 官网下载jdk图1 2.在官网网站中找到合适的版本下载(以最新版本为例),如下图所示: 官网下载jdk图2 官网下载 ...

  10. java socket domain name 使用域名.

    java 的 socket 依赖了 nameService.  引擎模式. 使得 socket tcp 层 具有了上层业务的能力 (应用层) Socket socket=new Socket(&quo ...