题目大意:

一个无向图 每个点有权值 支持两个操作

1 修改某个点的权值

2 查询a-b所有简单路径的点上的最小值

思路:

可以把图变成圆方树 然后树链剖分 维护

对于每个方点使用可删堆维护

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define inf 2139062143
#define ll long long
#define MAXN 200100
#define V g2.to[i]
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-;if(ch=='A'||ch=='C') return ch-'A';ch=getchar();}
while(isdigit(ch)) {x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,Q,tot;
struct graph
{
int cnt,fst[MAXN],nxt[MAXN<<],to[MAXN<<];
graph(){memset(fst,,sizeof(fst));cnt=;}
void add(int u,int v) {nxt[++cnt]=fst[u],fst[u]=cnt,to[cnt]=v;}
}g1,g2;
int st[MAXN],dfn[MAXN],low[MAXN],top,stp,val[MAXN];
int hsh[MAXN],dep[MAXN],bl[MAXN],fa[MAXN],sz[MAXN];
priority_queue <int,vector<int>,greater<int> > q[MAXN],d[MAXN];
void tarjan(int x)
{
dfn[x]=low[x]=++stp,st[++top]=x;
sz[x]=;int now=;
for(int i=g1.fst[x];i;i=g1.nxt[i])
if(!dfn[g1.to[i]])
{
tarjan(g1.to[i]);low[x]=min(low[x],low[g1.to[i]]);
if(low[g1.to[i]]<dfn[x]) continue;m++;
do{now=st[top--],sz[m]+=sz[now];g2.add(m,now);}
while(now!=g1.to[i]);
g2.add(x,m);sz[x]+=sz[m];
}
else low[x]=min(low[x],dfn[g1.to[i]]);
}
void dfs(int x)
{
for(int i=g2.fst[x];i;i=g2.nxt[i]) {dep[V]=dep[x]+,fa[V]=x;dfs(V);}
}
void dfs(int x,int anc)
{
hsh[x]=++tot,bl[x]=anc;int hvs=,tmp= x<=n;
for(int i=g2.fst[x];i;i=g2.nxt[i])
{
if(sz[V]>sz[hvs]) hvs=V;
if(!tmp) q[x].push(val[V]);
}
if(!hvs) return ;dfs(hvs,anc);
for(int i=g2.fst[x];i;i=g2.nxt[i])
if(V!=hvs) dfs(V,V);
}
int mn[MAXN<<];
void mdf(int k,int l,int r,int x,int w)
{
if(l==r) {mn[k]=w;return ;}
int mid=(l+r)>>;
if(x<=mid) mdf(k<<,l,mid,x,w);
else mdf(k<<|,mid+,r,x,w);
mn[k]=min(mn[k<<],mn[k<<|]);
}
int query(int k,int l,int r,int a,int b)
{
if(l==a&&r==b) return mn[k];
int mid=(l+r)>>;
if(b<=mid) return query(k<<,l,mid,a,b);
else if(a>mid) return query(k<<|,mid+,r,a,b);
else return min(query(k<<,l,mid,a,mid),query(k<<|,mid+,r,mid+,b));
}
void pop(int x)
{
while(q[x].top()==d[x].top()&&!d[x].empty()) {q[x].pop();d[x].pop();}
}
int main()
{
n=read(),m=read(),Q=read();int a,b,c,res;
for(int i=;i<=n;i++) val[i]=read();
while(m--) {a=read(),b=read();g1.add(a,b);g1.add(b,a);}
m=n;tarjan();dfs();dfs(,);
memset(mn,,sizeof(mn));
for(int i=;i<=m;i++)
if(i>n) mdf(,,m,hsh[i],q[i].top());
else mdf(,,m,hsh[i],val[i]);
while(Q--)
{
c=read(),a=read(),b=read(),res=inf;
if(c^)
{
while(bl[a]!=bl[b])
{
if(dep[bl[a]]<dep[bl[b]]) swap(a,b);
res=min(res,query(,,m,hsh[bl[a]],hsh[a]));
a=fa[bl[a]];
}
if(dep[a]>dep[b]) swap(a,b);
if(a>n) res=min(res,val[fa[a]]);
res=min(res,query(,,m,hsh[a],hsh[b]));
printf("%d\n",res);continue;
}
if(a==) {val[a]=b;mdf(,,m,hsh[a],b);continue;}
d[fa[a]].push(val[a]);q[fa[a]].push(b);
if(b!=q[fa[a]].top()&&val[a]!=q[fa[a]].top()) {val[a]=b;mdf(,,m,hsh[a],b);continue;}
pop(fa[a]);val[a]=b;mdf(,,m,hsh[a],val[a]);mdf(,,m,hsh[fa[a]],q[fa[a]].top());
}
}

uoj 30 tourists的更多相关文章

  1. 【Codefoces487E/UOJ#30】Tourists Tarjan 点双连通分量 + 树链剖分

    E. Tourists time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard inpu ...

  2. UOJ #30. [CF Round #278] Tourists

    UOJ #30. [CF Round #278] Tourists 题目大意 : 有一张 \(n\) 个点, \(m\) 条边的无向图,每一个点有一个点权 \(a_i\) ,你需要支持两种操作,第一种 ...

  3. UOJ #30【CF Round #278】Tourists

    求从$ x$走到$ y$的路径上可能经过的最小点权,带修改  UOJ #30 $ Solution:$ 如果两个点经过了某个连通分量,一定可以走到这个连通分量的最小值 直接构建圆方树,圆点存原点的点权 ...

  4. UOJ#30/Codeforces 487E Tourists 点双连通分量,Tarjan,圆方树,树链剖分,线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ30.html 题目传送门 - UOJ#30 题意 uoj写的很简洁.清晰,这里就不抄一遍了. 题解 首先建 ...

  5. 【题解】Uoj#30 Tourist(广义圆方树+树上全家桶)

    [题解]Uoj#30 Tourist(广义圆方树+树上全家桶) 名字听起来很霸气其实算法很简单.... 仙人掌上的普通圆方树是普及题,但是广义圆方树虽然很直观但是有很多地方值得深思 说一下算法的流程: ...

  6. UOJ #30. 【CF Round #278】Tourists

    Description Cyberland 有 n 座城市,编号从 1 到 n,有 m 条双向道路连接这些城市.第 j 条路连接城市 aj 和 bj.每天,都有成千上万的游客来到 Cyberland ...

  7. [UOJ30/Codeforces Round #278 E]Tourists

    传送门 好毒瘤的一道题QAQ,搞了好几好几天. UOJ上卡在了53个点,CF上过了,懒得优化常数了 刚看时一眼Tarjan搞个强连通分量然后缩点树链剖分xjb搞搞就行了,然后写完了,然后WA了QAQ. ...

  8. 仙人掌&圆方树学习笔记

    仙人掌&圆方树学习笔记 1.仙人掌 圆方树用来干啥? --处理仙人掌的问题. 仙人掌是啥? (图片来自于\(BZOJ1023\)) --也就是任意一条边只会出现在一个环里面. 当然,如果你的图 ...

  9. 2018.07.29~30 uoj#170. Picks loves segment tree VIII(线段树)

    传送门 线段树好题. 维护区间取两种最值,区间加,求区间两种历史最值,区间最小值. 自己的写法调了一个晚上+一个上午+一个下午+一个晚上并没有调出来,90" role="prese ...

随机推荐

  1. Git上传的使用步骤

    Git上传的使用步骤 首先 git branch 查看当前的分支是否为本地自己分支 接着 git stash 保存本地自己的保存 git checkout earemote 查看本地共有开发分支 gi ...

  2. hdu 1232水

    #include<stdio.h> #define N 1000 int pre[N]; int find(int n ){ return pre[n]=n==pre[n]?n:find( ...

  3. [Vijos] 河蟹王国

    描述 河蟹王国有一位河蟹国王,他的名字叫羊驼.河蟹王国富饶安定,人们和谐相处.有一天,羊驼国王心血来潮,想在一部分人中挑出最和谐的人.于是,羊驼国王将他的子民排成了一列(==!!b汗~好长呀).每个人 ...

  4. APP后端处理表情的一些技巧

    app应用中文字夹带表情是个很常见的现象.甚至一些40多岁的大叔级用户,也喜欢在自己的昵称中夹带表情,在产品运营后发现这个现象,彻底颠覆了我的世界观. 在后台处理表情的时间,我遇到过下面3个问题: 1 ...

  5. 几道hash题

    1: UVa 10887 - Concatenation of Languages map 可以做 ,但是输入实在恶心,有空串之类的HASH模板: int Hash(char *s){   int s ...

  6. openstack ocata 的cell 和 placement api

    The Ocata openstack just released recently. The official docs is not very stable yet. Some key steps ...

  7. Jmeter的几个关键配置文件

    1.配置文件位于bin目录下: 2.配置文件可能存在优先级关系,好像user.properties会覆盖jmeter.properties,一般修改配置都是修改或者添加user.properties, ...

  8. [转]thrift系列 - 快速入门

    原文: http://blog.csdn.net/hrn1216/article/details/51274934 thrift 介绍,入门例子. thrift 是一个RPC框架,实现跨语言 ---- ...

  9. webpack-Hot Module Replacement(热更新)

    模块热替换(Hot Module Replacement) 模块热替换(HMR - Hot Module Replacement)功能会在应用程序运行过程中替换.添加或删除模块,而无需重新加载整个页面 ...

  10. 关于disable和readonly

    我们在做网页时,难免的会因为权限或者各种原因,想让使用者看到,但是却不想让用户去对值进行更改,我们有两个选择 一.我们使用disabled将文本框禁用掉. 二.我们使用readonly使得文本框只能读 ...