题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=4612

Warm up

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 7206    Accepted Submission(s): 1681

Problem Description
  N planets are connected by M bidirectional channels that allow instant transportation. It's always possible to travel between any two planets through these channels.
  If we can isolate some planets from others by breaking only one channel , the channel is called a bridge of the transportation system.
People don't like to be isolated. So they ask what's the minimal number of bridges they can have if they decide to build a new channel.
  Note that there could be more than one channel between two planets.
 
Input
  The input contains multiple cases.
  Each case starts with two positive integers N and M , indicating the number of planets and the number of channels.
  (2<=N<=200000, 1<=M<=1000000)
  Next M lines each contains two positive integers A and B, indicating a channel between planet A and B in the system. Planets are numbered by 1..N.
  A line with two integers '0' terminates the input.
 
Output
  For each case, output the minimal number of bridges after building a new channel in a line.
 
Sample Input
4 4
1 2
1 3
1 4
2 3
0 0
 
Sample Output
0
 
Author
SYSU
 
Source
 
Recommend
zhuyuanchen520
 
 
题解:
1.用Tarjan算法求出每个边双联通分量,由于每一对点之间可以有多条边,所以在判断边是否被重复访问时,需要依据边的下标而定 。
2.对每个边双联通分量进行缩点,缩点之后得到的是一棵无根树。
3.在树上添加一条边,使得桥的数目减少最多。最多能减少多少呢?树上最长路。
 
 
vector建树:
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 2e5+; struct Edge
{
int to, next;
}edge[MAXN*];
int tot, head[MAXN];
vector<int>g[MAXN]; void addedge(int u, int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} int index, dfn[MAXN], low[MAXN];
int top, Stack[MAXN], instack[MAXN];
int block, belong[MAXN]; void Tarjan(int u, int pre)
{
dfn[u] = low[u] = ++index;
Stack[top++] = u;
instack[u] = true;
for(int i = head[u]; i!=-; i = edge[i].next)
{
//因为一对点之间可能有多条边,所以不能根据v是否为上一个点来防止边是否被重复访问。而需要根据边的编号
if((i^)==pre) continue;
int v = edge[i].to;
if(!dfn[v])
{
Tarjan(v, i);
low[u] = min(low[u], low[v]);
}
else if(instack[v])
low[u] = min(low[u], dfn[v]);
} if(low[u]==dfn[u])
{
block++;
int v;
do
{
v = Stack[--top];
instack[v] = false;
belong[v] = block;
}while(v!=u);
}
} int diameter, endpoint;
int dfs(int u, int pre, int dep)
{
if(dep>diameter) { endpoint = u; diameter = dep; }
for(int i = ; i<g[u].size(); i++)
if(g[u][i]!=pre)
dfs(g[u][i], u, dep+);
} void init(int n)
{
tot = ;
memset(head, -, sizeof(head)); index = ;
memset(dfn, , sizeof(dfn));
memset(low, , sizeof(low)); top = ;
memset(instack, false, sizeof(instack)); block = ;
for(int i = ; i<=n; i++)
belong[i] = i, g[i].clear();
} int main()
{
int n, m;
while(scanf("%d%d", &n, &m) && (n||m) )
{
init(n);
for(int i = ; i<=m; i++)
{
int u, v;
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
} Tarjan(, -);
for(int u = ; u<=n; u++)
for(int i = head[u]; i!=-; i = edge[i].next)
{
int v = edge[i].to;
if(belong[u]!=belong[v])
g[belong[u]].push_back(belong[v]);
} endpoint = , diameter = ;
dfs(, -, );
dfs(endpoint, -, );
printf("%d\n", block--diameter);
}
}
前向星建树:
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 2e5+; struct Edge
{
int from, to, next;
}edge[MAXN*];
int tot, head[MAXN]; void addedge(int u, int v)
{
edge[tot].from = u;
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} int index, dfn[MAXN], low[MAXN];
int top, Stack[MAXN], instack[MAXN];
int block, belong[MAXN]; void Tarjan(int u, int pre)
{
dfn[u] = low[u] = ++index;
Stack[top++] = u;
instack[u] = true;
for(int i = head[u]; i!=-; i = edge[i].next)
{
//因为一对点之间可能有多条边,所以不能根据v是否为上一个点来防止边是否被重复访问。而需要根据边的编号
if((i^)==pre) continue;
int v = edge[i].to;
if(!dfn[v])
{
Tarjan(v, i);
low[u] = min(low[u], low[v]);
}
else if(instack[v])
low[u] = min(low[u], dfn[v]);
} if(low[u]==dfn[u])
{
block++;
int v;
do
{
v = Stack[--top];
instack[v] = false;
belong[v] = block;
}while(v!=u);
}
} int diameter, endpoint;
int dfs(int u, int pre, int dep)
{
if(dep>diameter) { endpoint = u; diameter = dep; }
for(int i = head[u]; i!=-; i = edge[i].next)
if(edge[i].to!=pre)
dfs(edge[i].to, u, dep+);
} void init(int n)
{
tot = ;
memset(head, -, sizeof(head)); index = ;
memset(dfn, , sizeof(dfn));
memset(low, , sizeof(low)); top = ;
memset(instack, false, sizeof(instack)); block = ;
for(int i = ; i<=n; i++)
belong[i] = i;
} int main()
{
int n, m;
while(scanf("%d%d", &n, &m) && (n||m) )
{
init(n);
for(int i = ; i<=m; i++)
{
int u, v;
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
} Tarjan(, -);
tot = ;
memset(head, -, sizeof(head));
for(int i = ; i<*m; i++)
{
int u = edge[i].from, v = edge[i].to;
if(belong[u]!=belong[v])
addedge(belong[u], belong[v]);
} endpoint = , diameter = ;
dfs(, -, );
dfs(endpoint, -, );
printf("%d\n", block--diameter);
}
}
 

HDU4612 Warm up —— 边双联通分量 + 重边 + 缩点 + 树上最长路的更多相关文章

  1. POJ-3352-RoadConstruction(边双联通分量,缩点)

    链接:https://vjudge.net/problem/POJ-3352#author=0 题意: 给一个无向连通图,至少添加几条边使得去掉图中任意一条边不改变图的连通性(即使得它变为边双连通图) ...

  2. HDU4738 Caocao's Bridges —— 边双联通分量 + 重边

    题目链接:https://vjudge.net/problem/HDU-4738 A network administrator manages a large network. The networ ...

  3. [J]computer network tarjan边双联通分量+树的直径

    https://odzkskevi.qnssl.com/b660f16d70db1969261cd8b11235ec99?v=1537580031 [2012-2013 ACM Central Reg ...

  4. 【UVA10972】RevolC FaeLoN (求边双联通分量)

    题意: 给你一个无向图,要求把所有无向边改成有向边,并且添加最少的有向边,使得新的有向图强联通. 分析: 这题的解法还是很好想的.先用边双联通分量缩点,然后找新图中入度为0和为1的点,入度为0则ans ...

  5. ARC062 - F. Painting Graphs with AtCoDeer (Polya+点双联通分量)

    似乎好久都没写博客了....赶快来补一篇 题意 给你一个 \(n\) 个点 , 没有重边和自环的图 . 有 \(m\) 条边 , 每条边可以染 \(1 \to k\) 中的一种颜色 . 对于任意一个简 ...

  6. POJ2942 Knights of the Round Table【Tarjan点双联通分量】【二分图染色】【补图】

    LINK 题目大意 有一群人,其中有一些人之间有矛盾,现在要求选出一些人形成一个环,这个环要满足如下条件: 1.人数大于1 2.总人数是奇数 3.有矛盾的人不能相邻 问有多少人不能和任何人形成任何的环 ...

  7. lightoj 1300 边双联通分量+交叉染色求奇圈

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1300 边双连通分量首先dfs找出桥并标记,然后dfs交叉着色找奇圈上的点.这题只要求在 ...

  8. HDU5409---CRB and Graph 2015多校 双联通分量缩点

    题意:一个联通的无向图, 对于每一条边, 若删除该边后存在两点不可达,则输出这两个点, 如果存在多个则输出第一个点尽可能大,第二个点尽可能小的. 不存在输出0 0 首先 若删除某一条边后存在多个联通分 ...

  9. poj2942(双联通分量,交叉染色判二分图)

    题意:一些骑士,他们有些人之间有矛盾,现在要求选出一些骑士围成一圈,圈要满足如下条件:1.人数大于1.2.总人数为奇数.3.有仇恨的骑士不能挨着坐.问有几个骑士不能和任何人形成任何的圆圈. 思路:首先 ...

随机推荐

  1. gitHub网站上常见英语翻译2

    repositories资料库 compilers with rich code analysis APIs.编译器具有丰富的代码分析API. plugins插件 With a variety of ...

  2. [CTSC2007]数据备份Backup 题解

    题意: 一维直线上有n个点,任取2k个互不相同的点组成k条链,求链的最小总长 思路: 1.最优时链不相交,相邻两两相减,将题目转化为:在n-1个数中取互不相邻的k个数使总和最小. 2.贪心取最小的“数 ...

  3. 显示倒计时,为零时自动点击按钮提交【JavaScript实现】

    原文发布时间为:2008-10-17 -- 来源于本人的百度文章 [由搬家工具导入] <html> <head> <title>显示倒计时,完毕提交</tit ...

  4. jQuery根据属性模糊匹配元素

    1.查看带有指定属性的元素: [attribute] 例如: $("div[id]") 2.查看属性值是某个特定值的元素: [attribute=value] 例如: $(&quo ...

  5. 大话数据结构——KMP算法(还存在问题)

    http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html /*#include& ...

  6. Catch The Caw——(广度优先搜索的应用,队列)

    抓住那头牛(POJ3278)农夫知道一头牛的位置,想要抓住它.农夫和牛都位于数轴上,农夫起始位于点N(0<=N<=100000),牛位于点K(0<=K<=100000).农夫有 ...

  7. 从零开始写STL-string类型

    class string { public: typedef size_t size_type; typedef char* iterator; typedef char value_type; pr ...

  8. Beat---hdu2614

    http://acm.hdu.edu.cn/showproblem.php?pid=2614 题目大意   题目就不粘了  就是一个简单的深搜  由于我深搜实在是不懂  就在写一个博客记录一下 #in ...

  9. [Bzoj4260]Codechef REBXOR(trie树)

    4260: Codechef REBXOR Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1534  Solved: 669[Submit][Stat ...

  10. 寒武纪camp Day2

    补题进度:8/10 A(计数+BIT) 题意: 给一个长度为n的数组a[],任意选0<=i<=j<n,将a[i]~a[j]从小到大排序,形成新的数组.问有多少个不同的新数组. N,a ...