zoj 2532 Internship【最小割】
就是求哪些边在最大流上满流,也就是找割边。把0作为t点,s向所有的1~n连流量为inf的边,其他的边按照流量连。跑一遍最大流,从s顺着有残余流量的正向边dfs打标记fr,从t顺着正向边有残余流量的反向边dfs打标记to,那么满足条件的边就是两端点分别有fr和to标记并且满流(这里只考虑正向边),因为这意味着在这条边上增加流量就可以再流一条增广路。
注意一下输出格式,行末不能有空格。
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int N=205,inf=1e9,L=2005;
int n,m,l,h[N],cnt=1,le[N],s,t,ans[L];
bool fr[L],to[L];
struct qwe
{
int ne,no,to,v;
}e[N*N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].no=u;
e[cnt].to=v;
e[cnt].v=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{
add(u,v,w);
add(v,u,0);
}
bool bfs()
{
queue<int>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].v>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(u==t||!f)
return f;
int us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(le[e[i].to]==le[u]+1&&e[i].v>0)
{
int d=dfs(e[i].to,min(e[i].v,f-us));
e[i].v-=d;
e[i^1].v+=d;
us+=d;
}
if(!us)
le[u]=0;
return us;
}
int dinic()
{
int re=0;
while(bfs())
re+=dfs(s,inf);
return re;
}
void dfs1(int u)
{
fr[u]=1;
for(int i=h[u];i;i=e[i].ne)
if(!fr[e[i].to]&&e[i].v!=0)
dfs1(e[i].to);
}
void dfs2(int u)
{
to[u]=1;
for(int i=h[u];i;i=e[i].ne)
if(!to[e[i].to]&&e[i^1].v!=0)
dfs2(e[i].to);
}
int main()
{
while(1)
{
n=read(),m=read(),l=read();
if(n==0)
break;
s=n+m+1,t=0;
memset(fr,0,sizeof(fr));
memset(to,0,sizeof(to));
memset(h,0,sizeof(h));
cnt=1;ans[0]=0;
for(int i=1;i<=l;i++)
{
int x=read(),y=read(),z=read();
ins(x,y,z);
}
for(int i=1;i<=n;i++)
ins(s,i,inf);
dinic();
dfs1(s);
dfs2(t);
for(int i=1;i<=l;i++)
if(fr[e[i<<1].no]&&to[e[i<<1].to]&&e[i<<1].v==0)
ans[++ans[0]]=i;
if(ans[0])
{
printf("%d",ans[1]);;
for(int i=2;i<=ans[0];i++)
printf(" %d",ans[i]);
}
printf("\n");
}
return 0;
}
zoj 2532 Internship【最小割】的更多相关文章
- ZOJ 2532 网络流最小割
求最小割的问题. 题意:已知网络中有n个源点,m的中转站(也就是节点),一个汇点(编号为0).给出网络,求一些边(增大这个边就可以增大汇点流量的边). 思路:一开始代码只找了有流=0就加入输出数组的情 ...
- ZOJ 2532 Internship
Internship Time Limit: 5000ms Memory Limit: 32768KB This problem will be judged on ZJU. Original ID: ...
- zoj 2587 判断最小割的唯一性
算法: 先求出残量网络,计算出从src能够到的点集A,再求出能够到dst的点集B,如果所有点都被访问到了,那么割就是唯一的,即(A,B),否则(A,V-A)和(V-B,B)都是最小割. (注意因为割的 ...
- ZOJ 2532 Internship 求隔边
Internship Time Limit: 5 Seconds Memory Limit: 32768 KB CIA headquarter collects data from acro ...
- ZOJ 2532 Internship(最大流找关键割边)
Description CIA headquarter collects data from across the country through its classified network. Th ...
- ZOJ 2753 Min Cut (Destroy Trade Net)(无向图全局最小割)
题目大意 给一个无向图,包含 N 个点和 M 条边,问最少删掉多少条边使得图分为不连通的两个部分,图中有重边 数据范围:2<=N<=500, 0<=M<=N*(N-1)/2 做 ...
- ZOJ 2676 Network Wars(最优比例最小割)
Network Wars Time Limit: 5 Seconds Memory Limit: 32768 KB Special Judge Network of Bytelan ...
- zoj 3165 (最小割,最大点权独立集)
胡伯涛的<最小割模型在信息学竞赛中的应用>写的真牛. 这道题是选择一些男孩和女孩参加party,邀请的男孩女孩之间不能有 8g,图就是个明显的二分图,就是选择一些点之间没有8g关系,就是二 ...
- ZOJ 2587 Unique Attack (最小割唯一性)
题意 判断一个无向图的割是否唯一 思路 错误思路:一开始想的是判断割边是否都是关键割边,那既然割边两端点能连通S.T点的边是关键边,那么只要遇到有某个边两端点不连通S or T则这条边就不是关键割边( ...
随机推荐
- CentOS6 Install kafka
https://www.cnblogs.com/caoguo/p/5958608.html
- 各种ORM框架对比(理论篇,欢迎来观摩,并且纠正部分错误,防止误区)
各种ORM框架对比 目前框架有以下 PetaPoco Dapper.NET Massive Simple.Data Chain PetaPoco 轻量级,以前单文件,目前有维护形成项目级别,适合多个数 ...
- makefile的语法及写法(二)
3 Makefile书写规则 -------------------------------------------------------------------------------- 规则包 ...
- c++ static const
static 是c++中很常用的修饰符,它被用来控制变量的存储方式和可见性,下面我将从 static 修饰符的产生原因.作用谈起,全面分析static 修饰符的实质. static 的两大作用: 一. ...
- linux下查看哪个进程占用内存多
1.用top命令 1.top top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器 可以直接使用top命令后,查看%MEM的内容.可以 ...
- hdu4183往返经过至多每一个点一次/最大流
题意:从s到t,每一个点有f值,仅仅能从f值小的到大的.到T后回来.仅仅能从f值大的到 小的,求可行否. 往返,事实上就是俩条路过去(每一个点最多一次).所以想到流量为2,跑最大流.看是否满2,又要每 ...
- superCleanMaster
https://github.com/eltld/superCleanMaster
- java 报错非法的前向引用
今天在看<thinking in java>的时候,第四章提到了非法的前向引用,于是自己试了一下,书中的例子倒是一下就明白了,但是自己写的一个却怎么也不明白,于是上网问了一位前辈,终于明白 ...
- Python开发【第2节】【Python运算符】
Python语言支持以下类型的运算符: 算术运算符 比较(关系)运算符 赋值运算符 逻辑运算符 位运算符 成员运算符 身份运算符 运算符优先级 1.算术运算符 假设变量a = 10,变量b = 21: ...
- hdu 2059 龟兔赛跑 (dp)
/* 把起点和终点比作加油站,那总共同拥有n+2个加油站了, 每次都求出从第0个到第j个加油站(j<i)分别在加满油的情况下到第i个加油站的最短时间dp[i], 终于的dp[n+1]就是最优解了 ...