就是求哪些边在最大流上满流,也就是找割边。把0作为t点,s向所有的1~n连流量为inf的边,其他的边按照流量连。跑一遍最大流,从s顺着有残余流量的正向边dfs打标记fr,从t顺着正向边有残余流量的反向边dfs打标记to,那么满足条件的边就是两端点分别有fr和to标记并且满流(这里只考虑正向边),因为这意味着在这条边上增加流量就可以再流一条增广路。

注意一下输出格式,行末不能有空格。

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int N=205,inf=1e9,L=2005;
int n,m,l,h[N],cnt=1,le[N],s,t,ans[L];
bool fr[L],to[L];
struct qwe
{
int ne,no,to,v;
}e[N*N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].no=u;
e[cnt].to=v;
e[cnt].v=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{
add(u,v,w);
add(v,u,0);
}
bool bfs()
{
queue<int>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].v>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(u==t||!f)
return f;
int us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(le[e[i].to]==le[u]+1&&e[i].v>0)
{
int d=dfs(e[i].to,min(e[i].v,f-us));
e[i].v-=d;
e[i^1].v+=d;
us+=d;
}
if(!us)
le[u]=0;
return us;
}
int dinic()
{
int re=0;
while(bfs())
re+=dfs(s,inf);
return re;
}
void dfs1(int u)
{
fr[u]=1;
for(int i=h[u];i;i=e[i].ne)
if(!fr[e[i].to]&&e[i].v!=0)
dfs1(e[i].to);
}
void dfs2(int u)
{
to[u]=1;
for(int i=h[u];i;i=e[i].ne)
if(!to[e[i].to]&&e[i^1].v!=0)
dfs2(e[i].to);
}
int main()
{
while(1)
{
n=read(),m=read(),l=read();
if(n==0)
break;
s=n+m+1,t=0;
memset(fr,0,sizeof(fr));
memset(to,0,sizeof(to));
memset(h,0,sizeof(h));
cnt=1;ans[0]=0;
for(int i=1;i<=l;i++)
{
int x=read(),y=read(),z=read();
ins(x,y,z);
}
for(int i=1;i<=n;i++)
ins(s,i,inf);
dinic();
dfs1(s);
dfs2(t);
for(int i=1;i<=l;i++)
if(fr[e[i<<1].no]&&to[e[i<<1].to]&&e[i<<1].v==0)
ans[++ans[0]]=i;
if(ans[0])
{
printf("%d",ans[1]);;
for(int i=2;i<=ans[0];i++)
printf(" %d",ans[i]);
}
printf("\n");
}
return 0;
}

zoj 2532 Internship【最小割】的更多相关文章

  1. ZOJ 2532 网络流最小割

    求最小割的问题. 题意:已知网络中有n个源点,m的中转站(也就是节点),一个汇点(编号为0).给出网络,求一些边(增大这个边就可以增大汇点流量的边). 思路:一开始代码只找了有流=0就加入输出数组的情 ...

  2. ZOJ 2532 Internship

    Internship Time Limit: 5000ms Memory Limit: 32768KB This problem will be judged on ZJU. Original ID: ...

  3. zoj 2587 判断最小割的唯一性

    算法: 先求出残量网络,计算出从src能够到的点集A,再求出能够到dst的点集B,如果所有点都被访问到了,那么割就是唯一的,即(A,B),否则(A,V-A)和(V-B,B)都是最小割. (注意因为割的 ...

  4. ZOJ 2532 Internship 求隔边

    Internship Time Limit: 5 Seconds      Memory Limit: 32768 KB CIA headquarter collects data from acro ...

  5. ZOJ 2532 Internship(最大流找关键割边)

    Description CIA headquarter collects data from across the country through its classified network. Th ...

  6. ZOJ 2753 Min Cut (Destroy Trade Net)(无向图全局最小割)

    题目大意 给一个无向图,包含 N 个点和 M 条边,问最少删掉多少条边使得图分为不连通的两个部分,图中有重边 数据范围:2<=N<=500, 0<=M<=N*(N-1)/2 做 ...

  7. ZOJ 2676 Network Wars(最优比例最小割)

    Network Wars Time Limit: 5 Seconds      Memory Limit: 32768 KB      Special Judge Network of Bytelan ...

  8. zoj 3165 (最小割,最大点权独立集)

    胡伯涛的<最小割模型在信息学竞赛中的应用>写的真牛. 这道题是选择一些男孩和女孩参加party,邀请的男孩女孩之间不能有 8g,图就是个明显的二分图,就是选择一些点之间没有8g关系,就是二 ...

  9. ZOJ 2587 Unique Attack (最小割唯一性)

    题意 判断一个无向图的割是否唯一 思路 错误思路:一开始想的是判断割边是否都是关键割边,那既然割边两端点能连通S.T点的边是关键边,那么只要遇到有某个边两端点不连通S or T则这条边就不是关键割边( ...

随机推荐

  1. 51 Nod 1244 莫比乌斯函数前n项和

    积性函数前n项和必看好文 https://blog.csdn.net/skywalkert/article/details/50500009 递归计算的时候要用map记忆化一下,前面的打表会比较快一点 ...

  2. The Unique MST-POJ1679(次小生成树)

    http://poj.org/problem?id=1679 次小生成树 #include<stdio.h> #include<string.h> #include<st ...

  3. flash update

    https://get.adobe.com/cn/flashplayer/otherversions/

  4. jdk8 stream可以与list,map等数据结构互相转换

    前面我们使用过collect(toList()),在流中生成列表.实际开发过程中,List又是我们经常用到的数据结构,但是有时候我们也希望Stream能够转换生成其他的值,比如Map或者set,甚至希 ...

  5. Enhance Magento 404 page

    Magento default installation already has a predefined custom 404 page (no-route). But is it enough t ...

  6. Structual设计--Bridge模式

    1.意图 将抽象部分与它的实现部分分离.使他们都能够独立地变化. 2.别名 Handle/Body 3.动机 当一个抽象对象可能有多个实现时,通经常使用继承来协调它们.抽象类定义对该抽象的接口.而详细 ...

  7. react 组件之间传值

    谈及React时,就会想到一个很重要的思想,就是组件化思想.它将可以重用的部分进行组件化开发,形成一个个相对独立的组件,那么组件化后,你也会提出些疑问,组件与组件之间,将怎样进行信息的传递呢?下面来介 ...

  8. 【转】TestNG中的并发(多线程)

    优势 并行(多线程)技术在软件术语里被定义为软件.操作系统或者程序可以并行地执行另外一段程序中多个部分或者子组件的能力 多线程方式拥有很大的优势: 1). 减少测试运行时间 如果测试集里包含了大量的用 ...

  9. poj 1840 哈希

    Eqs Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14093   Accepted: 6927 Description ...

  10. CUDA编程(十)使用Kahan&#39;s Summation Formula提高精度

    CUDA编程(十) 使用Kahan's Summation Formula提高精度 上一次我们准备去并行一个矩阵乘法.然后我们在GPU上完毕了这个程序,当然是非常单纯的把任务分配给各个线程.也没有经过 ...