最近在看机器学习,看能否根据已有的历史来预测Hardware的故障发生概率。下文是一篇很有意思的文章,转自 http://numenta.org/htm.html。

NuPIC是一个开源项目,用来实现HTM.

-------------------

There are many things humans find easy to do that computers are currently unable to do. Tasks such as visual pattern recognition, understanding spoken language, recognizing and manipulating objects by touch, and navigating in a complex world are easy for humans. Yet despite decades of research, we have few viable algorithms for achieving human-like performance on a computer.

In humans, these capabilities are largely performed by the neocortex. Hierarchal Temporal Memory (HTM) is a technology modeled on how the neocortex performs these functions. It offers the groundwork for building machines that approach or exceed human level performance for many cognitive tasks. HTM is implemented within the NuPIC open source project.

Online Learning

Most machine learning techniques are relatively static. A model is constructed from a training data set, verified on a testing data set, and then applied to real-world data. However the patterns and structure in the world changes over time. Therefore previously accurate models must be regularly retrained with new data, repeating the time and expense of the original process.

HTM on the other hand is an online learning system. It does not require conventional training and testing data sets. Instead, HTM learns continuously with each new data point. HTM is constantly making predictions which are continually verified as more data arrives. As the underlying patterns in the data change HTM adjusts accordingly. An online learning system such as HTM forces you to think about many things differently than you do with algorithms that rely on static training data sets.

Sparse Distributed Representations

Computers store information in “dense” representations such as a 32 bit word where all combinations of 1s and 0s are possible.

By contrast, brains use sparse distributed representations. The human neocortex has roughly 100 billion neurons, but at any given time only a small percent are active. The activity of neurons are like bits in a computer, and therefore the representation is sparse. HTM also uses SDRs. A typical implementation of HTM might have 2048 columns and 64K artificial neurons where as few as 40 might be active at once. There are many mathematical advantages of using SDRs. HTM and the brain could not work otherwise.

This diagram represents sparsity: two thousand circles with a small number of red circles active.

This diagram represents a sparse distributed representation: two thousand circles with a small number of red circles active.

In SDRs, unlike in a dense representations, each bit has meaning. This means that if two vectors have 1s in the same position they are semantically similar in that attribute. SDRs are how brains solve the problem of knowledge representation that has plagued AI for decades.

For more details about SDRs, watch this excerpt from a talk given by Jeff Hawkins.

【转载】Hierarchal Temporal Memory (HTM)的更多相关文章

  1. 转载:MAT Memory Analyzer Tool使用示例

    地址:http://blog.csdn.net/yanghongchang_/article/details/7711911 以下是一个会导致java.lang.OutOfMemoryError: J ...

  2. 转载:.NET Memory Leak: XmlSerializing your way to a Memory Leak

    原文地址:http://blogs.msdn.com/b/tess/archive/2006/02/15/532804.aspx I hate to give away the resolution ...

  3. 皮质学习 HTM 知多少

    目录 Hierarchical Temporal Memeory 0.1 引言 历史 HTM 概览 HTM的层级结构 神经元 HTM 端对端应用框架[^8] 数据编码[^1] 数据编码 数据输入 树突 ...

  4. 应用层级时空记忆模型(HTM)实现对实时异常流时序数据检测

    应用层级时空记忆模型(HTM)实现对实时异常流时序数据检测 Real-Time Anomaly Detection for Streaming Analytics Subutai Ahmad SAHM ...

  5. 25个Java机器学习工具&库--转载

    本列表总结了25个Java机器学习工具&库: 1. Weka集成了数据挖掘工作的机器学习算法.这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用.Weka包括一系列的工具,如数据预 ...

  6. 如何利用AI识别未知——加入未知类(不太靠谱),检测待识别数据和已知样本数据的匹配程度(例如使用CNN降维,再用knn类似距离来实现),将问题转化为特征搜索问题而非决策问题,使用HTM算法(记忆+模式匹配预测就是智能),GAN异常检测,RBF

    https://www.researchgate.net/post/How_to_determine_unknown_class_using_neural_network 里面有讨论,说是用rbf神经 ...

  7. 储存技术(SLC、MLC、TLC和QLC的NAND闪存技术)和Optane Memory

    1.转载:Optane Memory 2.构成SSD的主要IC有主控芯片和NAND闪存,SLC.MLC和TLC三者都是闪存的类型 需要说明的闪存的寿命指的是写入(擦写)的次数,不是读出的次数,因为读取 ...

  8. PatentTips - Mechanisms for strong atomicity in a transactional memory system

    BACKGROUND Advances in semi-conductor processing and logic design have permitted an increase in the ...

  9. Basic Memory Structures

    Basic Memory Structures The basic memory structures associated with Oracle Database include: System ...

随机推荐

  1. String bulit-in function

    tip: 和tuple一样,字符串也是不可变的类型,字符串的内建函数有非常多,我们一一举例来看看他们的作用 下面是用dir(str) 输出的内容: ['__add__', '__class__', ' ...

  2. Fleck websocket官方事例

    Fleck websocket官方事例 server: using Fleck;using System;using System.Collections.Generic;using System.L ...

  3. 【转载】U3D 游戏引擎之游戏架构脚本该如何来写

    原文:http://tech.ddvip.com/2013-02/1359996528190113.html Unity3D 游戏引擎之游戏架构脚本该如何来写   2013-02-05 00:48:4 ...

  4. skynet源码阅读<6>--线程调度

    相比于上节我们提到的协程调度,skynet的线程调度从逻辑流程上来看要简单很多.下面我们就来具体做一分析.首先自然是以skynet_start.c为入口: static void start(int ...

  5. codevs1258关路灯

    传送门 1258 关路灯  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 大师 Master   题目描述 Description 多瑞卡得到了一份有趣而高薪的工作.每天早晨他 ...

  6. 笔记本创建wifi热点

    如何在Win8系统上建立WIFI热点 | 浏览: 2511 | 更新: 2013-04-10 01:55 | 标签: win8 59 28 全文阅读分步阅读   步骤 1 2 3 4 5 6 7 8 ...

  7. HTML <legend> 标签

    转自:https://www.w3cschool.cn/htmltags/tag-legend.html <!DOCTYPE HTML> <html> <body> ...

  8. js获取动态日期时间

    var timer=null; function tt(n){ if(n<10){ return '0'+n }else{ return n+'' } } timer=setInterval(f ...

  9. hdoj1528【二分匹配】

    题意: 在一幅扑克牌里,有两个人在比大小,第二个人最多能赢第一个人几张牌. 思路: 这道题目用一下二分匹配还是很明显的. 那么就是建图似乎要麻烦一下,但还是很方便的.将扑克牌一次进行编号,然后牌面比他 ...

  10. scrapy将爬取到的数据存入elasticsearch

    pip安装 elasticsearch-dsl的包, 是elasticsearch提供给python 的接口 if __name__ == "__main__": 这个用来调试,还 ...