Which dispatch method would be used in Swift?-Existential Container
In this example:
protocol MyProtocol {
func testFuncA()
}
extension MyProtocol {
func testFuncA() {
print("MyProtocol's testFuncA")
}
}
class MyClass : MyProtocol {}
let object: MyClass = MyClass()
object.testFuncA()
static dispatch is used. The concrete type of object is known at compile time; it's MyClass. Swift can then see that it conforms to MyProtocol without providing its own implementation of testFuncA(), so it can dispatch straight to the extension method.
So to answer your individual questions:
MyClassMyClassNo – a Swift class v-table only holds methods defined in the body of the class declaration. That is to say:
protocol MyProtocol {
func testFuncA()
}
extension MyProtocol {
// No entry in MyClass' Swift v-table.
// (but an entry in MyClass' protocol witness table for conformance to MyProtocol)
func testFuncA() {
print("MyProtocol's testFuncA")
}
}
class MyClass : MyProtocol {
// An entry in MyClass' Swift v-table.
func foo() {}
}
extension MyClass {
// No entry in MyClass' Swift v-table (this is why you can't override
// extension methods without using Obj-C message dispatch).
func bar() {}
}
There are no existential containers in the code:
let object: MyClass = MyClass()
object.testFuncA()
Existential containers are used for protocol-typed instances, such as your first example:
let object: MyProtocol = MyClass()
object.testFuncA()
The MyClass instance is boxed in an existential container with a protocol witness table that maps calls to testFuncA() to the extension method (now we're dealing with dynamic dispatch).
A nice way to see all of the above in action is by taking a look at the SIL generated by the compiler; which is a fairly high-level intermediate representation of the generated code (but low-level enough to see what kind of dispatch mechanisms are in play).
You can do so by running the following (note it's best to first remove print statements from your program, as they inflate the size of the SIL generated considerably):
swiftc -emit-sil main.swift | xcrun swift-demangle > main.silgen
Let's take a look at the SIL for the first example in this answer. Here's the main function, which is the entry-point of the program:
// main
sil @main : $@convention(c) (Int32, UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>) -> Int32 {
bb0(%0 : $Int32, %1 : $UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>):
alloc_global @main.object : main.MyClass // id: %2
%3 = global_addr @main.object : main.MyClass : $*MyClass // users: %9, %7
// function_ref MyClass.__allocating_init()
%4 = function_ref @main.MyClass.__allocating_init() -> main.MyClass : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %6
%5 = metatype $@thick MyClass.Type // user: %6
%6 = apply %4(%5) : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %7
store %6 to %3 : $*MyClass // id: %7
// Get a reference to the extension method and call it (static dispatch).
// function_ref MyProtocol.testFuncA()
%8 = function_ref @(extension in main):main.MyProtocol.testFuncA() -> () : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // user: %12
%9 = load %3 : $*MyClass // user: %11
%10 = alloc_stack $MyClass // users: %11, %13, %12
store %9 to %10 : $*MyClass // id: %11
%12 = apply %8<MyClass>(%10) : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> ()
dealloc_stack %10 : $*MyClass // id: %13
%14 = integer_literal $Builtin.Int32, 0 // user: %15
%15 = struct $Int32 (%14 : $Builtin.Int32) // user: %16
return %15 : $Int32 // id: %16
} // end sil function 'main'
The bit that we're interested in here is this line:
%8 = function_ref @(extension in main):main.MyProtocol.testFuncA() -> () : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // user: %12
The function_ref instruction gets a reference to a function known at compile-time. You can see that it's getting a reference to the function @(extension in main):main.MyProtocol.testFuncA() -> (), which is the method in the protocol extension. Thus Swift is using static dispatch.
Let's now take a look at what happens when we make the call like this:
let object: MyProtocol = MyClass()
object.testFuncA()
The main function now looks like this:
// main
sil @main : $@convention(c) (Int32, UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>) -> Int32 {
bb0(%0 : $Int32, %1 : $UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>):
alloc_global @main.object : main.MyProtocol // id: %2
%3 = global_addr @main.object : main.MyProtocol : $*MyProtocol // users: %9, %4
// Create an opaque existential container and get its address (%4).
%4 = init_existential_addr %3 : $*MyProtocol, $MyClass // user: %8
// function_ref MyClass.__allocating_init()
%5 = function_ref @main.MyClass.__allocating_init() -> main.MyClass : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %7
%6 = metatype $@thick MyClass.Type // user: %7
%7 = apply %5(%6) : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %8
// Store the MyClass instance in the existential container.
store %7 to %4 : $*MyClass // id: %8
// Open the existential container to get a pointer to the MyClass instance.
%9 = open_existential_addr immutable_access %3 : $*MyProtocol to $*@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol // users: %11, %11, %10
// Dynamically lookup the function to call for the testFuncA requirement.
%10 = witness_method $@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol, #MyProtocol.testFuncA!1 : <Self where Self : MyProtocol> (Self) -> () -> (), %9 : $*@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol : $@convention(witness_method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // type-defs: %9; user: %11
// Call the function we looked-up for the testFuncA requirement.
%11 = apply %10<@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol>(%9) : $@convention(witness_method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // type-defs: %9
%12 = integer_literal $Builtin.Int32, 0 // user: %13
%13 = struct $Int32 (%12 : $Builtin.Int32) // user: %14
return %13 : $Int32 // id: %14
} // end sil function 'main'
There are some key differences here.
An (opaque) existential container is created with init_existential_addr, and the MyClass instance is stored into it (store %7 to %4).
The existential container is then opened with open_existential_addr, which gets a pointer to the instance stored (the MyClass instance).
Then, witness_method is used in order to lookup the function to call for the protocol requirement MyProtocol.testFuncA for the MyClass instance. This will check the protocol witness table for MyClass's conformance, which is listed at the bottom of the generated SIL:
sil_witness_table hidden MyClass: MyProtocol module main {
method #MyProtocol.testFuncA!1: <Self where Self : MyProtocol> (Self) -> () -> () : @protocol witness for main.MyProtocol.testFuncA() -> () in conformance main.MyClass : main.MyProtocol in main // protocol witness for MyProtocol.testFuncA() in conformance MyClass
}
This lists the function @protocol witness for main.MyProtocol.testFuncA() -> (). We can check the implementation of this function:
// protocol witness for MyProtocol.testFuncA() in conformance MyClass
sil private [transparent] [thunk] @protocol witness for main.MyProtocol.testFuncA() -> () in conformance main.MyClass : main.MyProtocol in main : $@convention(witness_method) (@in_guaranteed MyClass) -> () {
// %0 // user: %2
bb0(%0 : $*MyClass):
%1 = alloc_stack $MyClass // users: %7, %6, %4, %2
copy_addr %0 to [initialization] %1 : $*MyClass // id: %2
// Get a reference to the extension method and call it.
// function_ref MyProtocol.testFuncA()
%3 = function_ref @(extension in main):main.MyProtocol.testFuncA() -> () : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // user: %4
%4 = apply %3<MyClass>(%1) : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> ()
%5 = tuple () // user: %8
destroy_addr %1 : $*MyClass // id: %6
dealloc_stack %1 : $*MyClass // id: %7
return %5 : $() // id: %8
} // end sil function 'protocol witness for main.MyProtocol.testFuncA() -> () in conformance main.MyClass : main.MyProtocol in main'
and sure enough, its getting a function_ref to the extension method, and calling that function.
The looked-up witness function is then called after the witness_method lookup with the line:
%11 = apply %10<@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol>(%9) : $@convention(witness_method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // type-defs: %9
So, we can conclude that dynamic protocol dispatch is used here, based on the use of witness_method.
We just breezed though quite a lot of technical details here; feel free to work through the SIL line-by-line, using the documentation to find out what each instruction does. I'm happy to clarify anything you may be unsure about.
https://stackoverflow.com/questions/48422621/which-dispatch-method-would-be-used-in-swift
Which dispatch method would be used in Swift?-Existential Container的更多相关文章
- Which dispatch method would be used in Swift?
In this example: protocol MyProtocol { func testFuncA() } extension MyProtocol { func testFuncA() { ...
- 通过设置swift中container的ACL提供匿名访问及用户授权读取服务
在上层使用swift提供的云存储服务的过程中,提出了无需验证的使用需求. 在参考了:http://my.oschina.net/alanlqc/blog/160196(curl命令操作) 官方文档: ...
- swift 该死的派发机制--待完成
swift 该死的派发机制 final static oc类型 多态类型 静态类型 动态函数 静态函数 nsobject: 1.缺省不再使用oc的动态派发机制: 2.可以使用nsobject暴露出来 ...
- 【基本功】深入剖析Swift性能优化
简介 2014年,苹果公司在WWDC上发布Swift这一新的编程语言.经过几年的发展,Swift已经成为iOS开发语言的“中流砥柱”,Swift提供了非常灵活的高级别特性,例如协议.闭包.泛型等,并且 ...
- 深入剖析Swift性能优化
简介 2014年,苹果公司在WWDC上发布Swift这一新的编程语言.经过几年的发展,Swift已经成为iOS开发语言的“中流砥柱”,Swift提供了非常灵活的高级别特性,例如协议.闭包.泛型等,并且 ...
- Swift 性能相关
起初的疑问源自于「在 Swift 中的, Struct:Protocol 比 抽象类 好在哪里?」.但是找来找去都是 Swift 性能相关的东西.整理了点笔记,供大家可以参考一下. 一些疑问 在正题开 ...
- Swift进阶之内存模型和方法调度
前言 Apple今年推出了Swift3.0,较2.3来说,3.0是一次重大的升级.关于这次更新,在这里都可以找到,最主要的还是提高了Swift的性能,优化了Swift API的设计(命名)规范. 前段 ...
- [转] How to dispatch a Redux action with a timeout?
How to dispatch a Redux action with a timeout? Q I have an action that updates notification state of ...
- Using Swift with Cocoa and Objective-C(Swift 2.0版):开始--基础设置-备
这是一个正在研发的API或技术的概要文件,苹果公司提供这些信息主要是为了帮助你通过苹果产品使用这些技术或者编程接口而做好计划,该信息有可能会在未来发生改变,本文当中提到的软件应该以最终发布的操作系统测 ...
随机推荐
- CRM 2011 开发中遇到的问题小结
1.将Retrive 方法改成 RetrieveMultiple时 如果指定的ColumnSet 没有指定主键(entiryname+id),要显示增加实体的主键.否则在调用 Retrieve方法时返 ...
- Java 基本类型和对象类型的区别
Java 基本类型和对象类型的区别 基本类型: int long byte float double char boolean short 对象类型: Integer Long Byte Float ...
- UICollectionView与UITableView混用手势冲突
前言 最近在重构某个模块,以后别人封装的所谓的基类就像一坨死一样,看见就恶心,相信同行的你们能够明白那种心情.为什么要重构?并不是真的因为它像一坨死,而是因为这个模块是用户使用最频繁的,而且出现了不少 ...
- [USACO 2004DEC] Navigation Nightmare
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=3362 [算法] 带权并查集 时间复杂度 : O(NlogN) [代码] #inclu ...
- 聊聊Shiro
Shiro是项目中用的比较多Java安全框架,能满足大多数项目的安全认证.授权流程.相比SpringSecurity的复杂重量级,它更简单易用. Shiro中最关键的两个概念是认证和授权,前者解决确认 ...
- bootstrap 表单元素、按钮、链接的禁用
在Bootstra中,表单元素,按钮通过在标签内设置 disabled 或 disabled="disabled" 可以禁用表单元素,按钮.链接需要加入class="di ...
- (转)Sql Server 保留几位小数的两种做法
原文地址:http://blog.csdn.net/skyandcode/article/details/23523815 问题: 数据库里的 float momey 类型,都会精确到多位小数.但有时 ...
- python爬虫爬取汽车页面信息,并附带分析(静态爬虫)
环境: windows,python3.4 参考链接: https://blog.csdn.net/weixin_36604953/article/details/78156605 代码:(亲测可以运 ...
- SpringBoot入门-15(springboot配置freemarker使用YML)
https://blog.csdn.net/fengsi2009/article/details/78879924 application.yml spring: http: encoding: fo ...
- [CF1076G] Array Game
Description Transmission Gate Solution 考虑Dp,设Dp[i] 表示当我们从前面跳跃到i时,他是必胜还是必败. 那么\(Dp[i] = Min(Dp[j], !( ...