题目:

洛谷3321

分析:

一个转化思路比较神(典型?)的题……

一个比较显然的\(O(n^3)\)暴力是用\(f[i][j]\)表示选了\(i\)个数,当前积在模\(m\)意义下为\(j\)的方案数,每次转移枚举\(S\)的元素,即(\(k^{-1}\)表示\(k\)在模\(m\)意义下的逆元):

\[f[i][j]=\sum_{k\in S} f[i-1][jk^{-1}]
\]

事实上写的时候通常是从\(f[i][j]\)往\(f[i+1][jk]\)贡献

然后通过Orz题解发现那个乘法\(jk^{-1}\)非常地丑,如果能变成加法就好了qwq。注意到保证\(m\)是一个质数,所以是可以求原根的。原根的好处在于模\(m\)的意义下\(g^i(i\in [0,m-1))\)与\(a(a \in [1,m-1])\)一一对应。所以如果用原根的幂代替原数,原数的乘法就变成了指数的加法。即设\(f[i][j]\)表示选了\(i\)个数,积在模\(m\)意义下是\(g^j\)的方案数,则:

\[f[i][j]=\sum_{g^k \in S} f[i-1][j-k]
\]

上面那个东西像不像卷积?一点都不像看到\(j-k\)难道你就不想再来一个跟\(k\)有关的东西吗?于是定义一个函数\(h(x)\):

\[h(x)=\begin{cases}1&(g^x\in S) \\
0&(otherwise)\end{cases}\]

那么就成了:

\[f[i][j]=\sum_{k=0}^{m-2}h(k)f[i-1][j-k]
\]

设一个多项式\(A\),第\(i\)项系数是\(h(i)\),则一开始\(f[1]\)就是\(A\),所以答案就是\(A^n\)的\(x\)次项系数,写一个多项式快速幂即可。

代码:

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cctype>
#include <set>
using namespace std; namespace zyt
{
template<typename T>
inline bool read(T &x)
{
char c;
bool f = false;
x = 0;
do
c = getchar();
while (c != EOF && c != '-' && !isdigit(c));
if (c == EOF)
return false;
if (c == '-')
f = true, c = getchar();
do
x = x * 10 + c - '0', c = getchar();
while (isdigit(c));
if (f)
x = -x;
return true;
}
template<typename T>
inline void write(T x)
{
static char buf[20];
char *pos = buf;
if (x < 0)
putchar('-'), x = -x;
do
*pos++ = x % 10 + '0';
while (x /= 10);
while (pos > buf)
putchar(*--pos);
}
typedef long long ll;
const int N = 8010, p = 1004535809;
int n, m;
set<int> s;
namespace Polynomial
{
const int LEN = N << 2;
int omega[LEN], winv[LEN], rev[LEN];
inline int power(int a, int b, const int p = ::zyt::p)
{
int ans = 1;
while (b)
{
if (b & 1)
ans = (ll)ans * a % p;
a = (ll)a * a % p;
b >>= 1;
}
return ans;
}
inline int inv(const int a, const int p = ::zyt::p)
{
return power(a, p - 2);
}
namespace Primitive_Root
{
pair<int, int>prime[N];
int cnt;
inline void get_prime(int n)
{
cnt = 0;
for (int i = 2; i * i <= n; i++)
{
if (n % i == 0)
{
prime[cnt++] = make_pair(i, 0);
while (n % i == 0)
++prime[cnt - 1].second, n /= i;
}
}
if (n > 1)
prime[cnt++] = make_pair(n, 1);
}
inline int get_g(const int n)
{
get_prime(n - 1);
for (int i = 2; i < n; i++)
{
bool flag = true;
for (int j = 0; j < cnt && flag; j++)
flag &= (power(i, (n - 1) / prime[j].first, n) != 1);
if (flag)
return i;
}
return -1;
}
}
void init(const int n, const int lg2)
{
static int g = 0;
if (!g)
g = Primitive_Root::get_g(p);
int w = power(g, (p - 1) / n), wi = inv(w);
omega[0] = winv[0] = 1;
for (int i = 1; i < n; i++)
{
omega[i] = (ll)omega[i - 1] * w % p;
winv[i] = (ll)winv[i - 1] * wi % p;
}
for (int i = 0; i < n; i++)
rev[i] = ((rev[i >> 1] >> 1) | ((i & 1) << (lg2 - 1)));
}
void ntt(int *a, const int *w, const int n)
{
for (int i = 0; i < n; i++)
if (i < rev[i])
swap(a[i], a[rev[i]]);
for (int l = 1; l < n; l <<= 1)
for (int i = 0; i < n; i += (l << 1))
for (int k = 0; k < l; k++)
{
int tmp = (a[i + k] - (ll)a[i + l + k] * w[n / (l << 1) * k] % p + p) % p;
a[i + k] = (a[i + k] + (ll)a[i + l + k] * w[n / (l << 1) * k] % p) % p;
a[i + l + k] = tmp;
}
}
void mul(const int *a, const int *b, int *c, const int n)
{
static int x[LEN], y[LEN];
memcpy(x, a, sizeof(int[n]));
memcpy(y, b, sizeof(int[n]));
int m = 1, lg2 = 0;
while (m < (n << 1))
m <<= 1, ++lg2;
init(m, lg2);
memset(x + n, 0, sizeof(int[m - n]));
memset(y + n, 0, sizeof(int[m - n]));
ntt(x, omega, m), ntt(y, omega, m);
for (int i = 0; i < m; i++)
x[i] = (ll)x[i] * y[i] % p;
ntt(x, winv, m);
int invm = inv(m);
for (int i = 0; i < n; i++)
c[i] = (ll)(x[i] + x[i + n]) * invm % p;
}
void power(const int *a, int b, int *c, const int n)
{
static int x[N];
memcpy(x, a, sizeof(int[n]));
memset(c, 0, sizeof(int[n]));
c[0] = 1;
while (b)
{
if (b & 1)
mul(c, x, c, n);
mul(x, x, x, n);
b >>= 1;
}
}
}
int A[N];
int work()
{
using Polynomial::power;
using Polynomial::Primitive_Root::get_g;
int x, ssize;
read(n), read(m), read(x), read(ssize);
for (int i = 0; i < ssize; i++)
{
int a;
read(a);
s.insert(a);
}
int g = get_g(m), gx = -1;
for (int i = 0; i < m - 1; i++)
{
int tmp = power(g, i, m);
if (s.count(tmp))
A[i] = 1;
if (tmp == x)
gx = i;
}
power(A, n, A, m - 1);
write(A[gx]);
return 0;
}
}
int main()
{
return zyt::work();
}

【洛谷3321_BZOJ3992】[SDOI2015]序列统计(原根_多项式)的更多相关文章

  1. [洛谷P3321][SDOI2015]序列统计

    题目大意:给你一个集合$n,m,x,S(S_i\in(0,m],m\leqslant 8000,m\in \rm{prime},n\leqslant10^9)$,求一个长度为$n$的序列$Q$,满足$ ...

  2. 洛谷P3321 [SDOI2015]序列统计(NTT)

    传送门 题意:$a_i\in S$,求$\prod_{i=1}^na_i\equiv x\pmod{m}$的方案数 这题目太珂怕了……数学渣渣有点害怕……kelin大佬TQL 设$f[i][j]$表示 ...

  3. 洛谷3321 SDOI2015 序列统计

    懒得放传送[大雾 有趣的一道题 前几天刚好听到Creed_神犇讲到相乘转原根变成卷积的形式 看到这道题当然就会做了啊w 对于m很小 我们暴力找原根 如果你不会找原根的话 出门左转百度qwq 找到原根以 ...

  4. 【bzoj3992】[SDOI2015]序列统计 原根+NTT

    题目描述 求长度为 $n$ 的序列,每个数都是 $|S|$ 中的某一个,所有数的乘积模 $m$ 等于 $x$ 的序列数目模1004535809的值. 输入 一行,四个整数,N.M.x.|S|,其中|S ...

  5. 洛咕 P3321 [SDOI2015]序列统计

    显然dp就是设\(f[i][j]\)表示dp了i轮,对m取膜是j的方案数 \(f[i][xy\mod m]=f[i-1][x]\times f[i-1][y]\) 这是\(O(nm^2)\)的 像我这 ...

  6. BZOJ3992 [SDOI2015]序列统计 【生成函数 + 多项式快速幂】

    题目 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题 ...

  7. [BZOJ3992][SDOI2015]序列统计(DP+原根+NTT)

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1888  Solved: 898[Submit][Statu ...

  8. [SDOI2015]序列统计(NTT+求原根)

    题目 [SDOI2015]序列统计 挺好的题!!! 做法 \(f[i][j]\)为第\(i\)个数前缀积在模\(M\)意义下为\(j\) 显然是可以快速幂的:\[f[2*i][j]=\sum\limi ...

  9. 【LG3321】[SDOI2015]序列统计

    [LG3321][SDOI2015]序列统计 题面 洛谷 题解 前置芝士:原根 我们先看一下对于一个数\(p\),它的原根\(g\)有什么性质(好像就是定义): \(g^0\%p,g^1\%p,g^2 ...

  10. BZOJ 3992: [SDOI2015]序列统计 [快速数论变换 生成函数 离散对数]

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 466[Submit][Statu ...

随机推荐

  1. 利用postman进行接口测试并发送带cookie请求的方法

    做web测试的基本上都用用到postman去做一些接口测试,比如测试接口的访问权限,对于某些接口用户A可以访问,用户B不能访问:比如有时需要读取文件的数据.在postman上要实现这样测试,我们就必要 ...

  2. codechef 写题计划

    此后将查找各种codechef的脑洞题和好题写

  3. session 与 cookie 区别-----https://segmentfault.com/a/1190000013447750?utm_source=tag-newest

    cookie数据存放在客户的浏览器上,session数据放在服务器上. cookie不是很安全,别人可以分析存放在本地的COOKIE并进行COOKIE欺骗考虑到安全应当使用session. sessi ...

  4. pyhthon第一个小脚本——文件备份

    先说说这个脚本的作用:对指定路径的文件进行压缩备份到另一个指定的路径,并且压缩文件的文件名用当时的日期+时间命名. 先是对着<简明Python教程>上的代码敲的,一堆错误,书上给的是lin ...

  5. windows安装Reids

    1.下载windows版本,64位,3.0版本就可以 官网下载地址:http://redis.io/download github下载地址:https://github.com/MSOpenTech/ ...

  6. HashMap源码分析3:移除

    本文源码基于JDK1.8.0_45. final Node<K,V> removeNode(int hash, Object key, Object value, boolean matc ...

  7. .NET跨平台 - WCF & Mono

    让WCF运行在Linux上(寄宿于服务器程序) WCF介绍请自行 bing 搜索 使用的开发工具为vs2017,系统为 Ubuntu16.04 服务器软件为Jexus ( 详情请看:  Jexus官网 ...

  8. Spring技术内幕:Spring AOP的实现原理(五)

    7.Advice通知的实现 AopProxy代理对象生成时,其拦截器也一并生成.以下我们来分析下Aop是怎样对目标对象进行增强的.在为AopProxy配置拦截器的实现中,有一个取得拦截器配置过程,这个 ...

  9. 躁动不安的const

    就是用来恐吓你的 我能想到的,最短的.且const最多的一个语句是: int const * fun(int const*const a[],const int index)const; 而这个语句还 ...

  10. js上传文件

    一.原始的XMLHttpRequestjs上传文件过程(參考地址:http://blog.sina.com.cn/s/blog_5d64f7e3010127ns.html) 用到两个对象 第一个对象: ...