洛谷——P1951 收费站_NOI导刊2009提高(2)
https://www.luogu.org/problem/show?pid=1951
题目描述
在某个遥远的国家里,有n个城市。编号为1,2,3,…,n。
这个国家的政府修建了m条双向的公路。每条公路连接着两个城市。沿着某条公路,开车从一个城市到另一个城市,需要花费一定的汽油。
开车每经过一个城市,都会被收取一定的费用(包括起点和终点城市)。所有的收费站都在城市中,在城市间的公路上没有任何的收费站。
小红现在要开车从城市u到城市v(1<=u,v<=n)。她的车最多可以装下s升的汽油。在出发的时候,车的油箱是满的,并且她在路上不想加油。
在路上,每经过一个城市,她都要交一定的费用。如果某次交的费用比较多,她的心情就会变得很糟。所以她想知道,在她能到达目的地的前提下,她交的费用中最多的一次最少是多少。这个问题对于她来说太难了,于是她找到了聪明的你,你能帮帮她吗?
输入输出格式
输入格式:
第一行5个正整数,n,m,u,v,s,分别表示有n个城市,m条公路,从城市u到城市v,车的油箱的容量为s升。
接下来的有n行,每行1个整数,fi表示经过城市i,需要交费fi元。
再接下来有m行,每行3个正整数,ai,bi,ci(1<=ai,bi<=n),表示城市ai和城市bi之间有一条公路,如果从城市ai到城市bi,或者从城市bi到城市ai,需要ci升的汽油。
输出格式:
仅一个整数,表示小红交费最多的一次的最小值。
如果她无法到达城市v,输出-1.
输入输出样例
4 4 2 3 8
8
5
6
10
2 1 2
2 4 1
1 3 4
3 4 3
8
说明
【数据规模】
对于60%的数据,满足n<=200,m<=10000,s<=200
对于100%的数据,满足n<=10000,m<=50000,s<=1000000000
对于100%的数据,满足ci<=1000000000,fi<=1000000000,可能有两条边连接着相同的城市。
做法同http://www.cnblogs.com/Shy-key/p/7684142.html, 数据更强,换了堆优化的Dijkstra
#include <algorithm>
#include <cstdio>
#include <queue> #define max(a,b) (a>b?a:b) inline void read(int &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
} const int INF(0x3f3f3f3f);
const int N();
const int M();
int n,m,s,t,b,f[N],a[N];
int head[N],sumedge;
struct Edge {
int v,next,w;
Edge(int v=,int next=,int w=):v(v),next(next),w(w){}
}edge[M<<];
inline void ins(int u,int v,int w)
{
edge[++sumedge]=Edge(v,head[u],w),head[u]=sumedge;
edge[++sumedge]=Edge(u,head[v],w),head[v]=sumedge;
} struct Node {
int pos;long long dis;
Node() {pos=,dis=;}
bool operator < (const Node&x)const
{
return dis>x.dis;
}
}u,v; bool vis[N];
long long dis[N];
std::priority_queue<Node>que; int L,R,Mid,ans;
inline bool check(int s,int x)
{
if(f[s]>x) return ;
for(int i=; i<=n; ++i) dis[i]=1ll*INF,vis[i]=;
for(; !que.empty(); ) que.pop();
u.dis=dis[s]=; u.pos=s; que.push(u);
for(; !que.empty(); )
{
u=que.top(); que.pop();
if(vis[u.pos]) continue; vis[u.pos]=;
for(int i=head[u.pos]; i; i=edge[i].next)
{
v.pos=edge[i].v;
if(f[v.pos]>x) continue;
if(dis[v.pos]<=dis[u.pos]+1ll*edge[i].w) continue;
v.dis=dis[v.pos]=dis[u.pos]+1ll*edge[i].w; que.push(v);
}
}
return dis[t]<b;
} int Presist()
{
read(n),read(m),read(s),read(t),read(b);
for(int i=; i<=n; ++i) read(f[i]),a[i]=f[i];
for(int u,v,w,i=; i<=m; ++i)
read(u),read(v),read(w),ins(u,v,w);
std::sort(a+,a+n+);
for(L=,R=n; L<=R; )
{
Mid=L+R>>;
if(check(s,a[Mid]))
{
ans=a[Mid];
R=Mid-;
}
else L=Mid+;
}
if(!ans) puts("-1");
else printf("%d\n",ans);
return ;
} int Aptal=Presist();
int main(int argc,char**argv){;}
洛谷——P1951 收费站_NOI导刊2009提高(2)的更多相关文章
- 洛谷 P1951 收费站_NOI导刊2009提高(2) 最短路+二分
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例: 输出样例: 说明 思路 AC代码 总结 题面 题目链接 P1951 收费站_NOI导刊2009提高(2) 其 ...
- 洛谷 P1951 收费站_NOI导刊2009提高(2)
题目描述 在某个遥远的国家里,有n个城市.编号为1,2,3,…,n. 这个国家的政府修建了m条双向的公路.每条公路连接着两个城市.沿着某条公路,开车从一个城市到另一个城市,需要花费一定的汽油. 开车每 ...
- [洛谷P1951]收费站_NOI导刊2009提高(2)
题目大意:有一张$n$个点$m$条边的图,每个点有一个权值$w_i$,有边权,询问从$S$到$T$的路径中,边权和小于$s$,且$\max\limits_{路径经过k}\{w_i\}$最小,输出这个最 ...
- 洛谷 P1950 长方形_NOI导刊2009提高(2)
传送门 思路 首先定义\(h\)数组,\(h[i][j]\)表示第\(i\)行第\(j\)列最多可以向上延伸多长(直到一个被用过的格子) 然后使用单调栈算出 \(l_i\)和 \(r_i\) ,分别是 ...
- 洛谷 P1950 长方形_NOI导刊2009提高(2) 题解
P1950 长方形_NOI导刊2009提高(2) 题目描述 小明今天突发奇想,想从一张用过的纸中剪出一个长方形. 为了简化问题,小明做出如下规定: (1)这张纸的长宽分别为n,m.小明讲这张纸看成是由 ...
- luogu P1951 收费站_NOI导刊2009提高(2) |二分答案+最短路
题目描述 在某个遥远的国家里,有n个城市.编号为1,2,3,-,n. 这个国家的政府修建了m条双向的公路.每条公路连接着两个城市.沿着某条公路,开车从一个城市到另一个城市,需要花费一定的汽油. 开车每 ...
- Luogu P1951 收费站_NOI导刊2009提高(2)
二分答案+堆优Dijkstra 这个题有些巧妙. 首先,因为要在油量耗完之前跑到终点,所以我们可以用最短路.只要从\(s\)出发到\(t\),它的最短距离大于油量,我们就可以断定它一定走不通,直接输出 ...
- Luogu P1951 收费站_NOI导刊2009提高(2) 二分 最短路
思路:二分+最短路 提交:1次 题解: 二分最后的答案. $ck()$: 对于每次的答案$md$跑$s,t$的最短路,但是不让$c[u]>md$的点去松弛别的边,即保证最短路不经过这个点.最后$ ...
- 题解 P1951 【收费站_NOI导刊2009提高(2)】
查看原题请戳这里 核心思路 题目让求最大费用的最小值,很显然这道题可以二分,于是我们可以二分花费的最大值. check函数 那么,我们该怎么写check函数呢? 我们可以删去费用大于mid的点以及与其 ...
随机推荐
- Oracle逻辑备份与恢复(Data Pump)
1. 备份的类型 按照备份方式的不同,可以把备份分为两类: 1.1 逻辑备份:指通过逻辑导出对数据进行备份.将数据库中的用户对象导出到一个二进制文件中,逻辑备份使用导入导出工具:EXPDP/IMPDP ...
- AngularJS日期格式化
本地化日期格式化:({{ today | date:'medium' }}) Mar 28, 2016 6:42:25 PM({{ today | date:'short' }}) 3/28 ...
- SQLite – DISTINCT 关键字
SQLite – DISTINCT关键字 使用SQLite DISTINCT关键字与SELECT语句来消除所有重复的记录和获取唯一的记录. 可能存在一种情况,当你有多个表中重复的记录. 获取这些记录, ...
- docker的网络配置
Docker的4种网络模式 我们在使用docker run创建Docker容器时,可以用–net选项指定容器的网络模式,Docker有以下4种网络模式: host模式:使用–net=host指定. c ...
- k8s 重要概念[转]
在实践之前,必须先学习 Kubernetes 的几个重要概念,它们是组成 Kubernetes 集群的基石. Cluster Cluster 是计算.存储和网络资源的集合,Kubernetes 利用这 ...
- 创建线程的三种方式_Callable和Runnable的区别
Java 提供了三种创建线程的方法 通过实现Runnable接口 通过继承Thread接口 通过Callable和Future创建线程 通过实现 Runnable 接口来创建线程 public cla ...
- render_to_response()
render_to_response('模板名称',字典) 字典:第二个参数必须是为该模板创建context时所使用的字典,如果不提供第二个参数,render_response()使用一个空字典
- webpack、node、npm之间的关系
webpack能够把.vue后缀名的文件打包成浏览器能够识别的js 而这个.vue文件装换需要打包器vue-loader 这个vue-loader打包器是可以从npm上面下载(npm上面有很多资源包) ...
- 【软件构造】第三章第三节 抽象数据型(ADT)
第三章第三节 抽象数据型(ADT) 3-1节研究了“数据类型”及其特性 ; 3-2节研究了方法和操作的“规约”及其特性:在本节中,我们将数据和操作复合起来,构成ADT,学习ADT的核心特征,以及如何设 ...
- 使用jave2将音频wav转换成mp3格式
最近需要用到语音合成功能,网上查阅了一番,发现可以使用腾讯云的语音合成API来完成这个功能,但是腾讯云的api返回的是wav格式的音频文件,这个格式的文件有些不通用,因此需要转换成mp3格式的文件. ...