Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

典型的dp题

class Solution {
public:
int minDistance(string word1, string word2) {
int row=word1.size()+;
int col=word2.size()+;
int isEqual=; int dp[row][col];
for(int i=;i<col;++i){
dp[][i]=i;
}
for(int i=;i<row;++i){
dp[i][]=i;
}
for(int i=;i<row;++i)
for(int j=;j<col;++j){
isEqual=(word1[i-]==word2[j-])?:;
dp[i][j]=min(dp[i-][j]+,min(dp[i][j-]+,dp[i-][j-]+isEqual));
}
return dp[row-][col-];
}
};

Edit Distance(动态规划,难)的更多相关文章

  1. 行编辑距离Edit Distance——动态规划

    题目描写叙述: 给定一个源串和目标串.可以对源串进行例如以下操作:  1. 在给定位置上插入一个字符  2. 替换随意字符  3. 删除随意字符 写一个程序.返回最小操作数,使得对源串进行这些操作后等 ...

  2. 动态规划 求解 Minimum Edit Distance

    http://blog.csdn.net/abcjennifer/article/details/7735272 自然语言处理(NLP)中,有一个基本问题就是求两个字符串的minimal Edit D ...

  3. leetCode 72.Edit Distance (编辑距离) 解题思路和方法

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  4. 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance

    引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...

  5. Leetcode之动态规划(DP)专题-72. 编辑距离(Edit Distance)

    Leetcode之动态规划(DP)专题-72. 编辑距离(Edit Distance) 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可 ...

  6. Edit Distance——经典的动态规划问题

    题目描述Edit DistanceGiven two words word1 and word2, find the minimum number of steps required to conve ...

  7. [LeetCode] One Edit Distance 一个编辑距离

    Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...

  8. [LeetCode] Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  9. Edit Distance

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

随机推荐

  1. UVA 1175 Ladies' Choice 女士的选择(稳定婚姻问题,GS算法)

    题意: 给出每个男的心目中的女神排序,给出每个女的心目中的男神排序,即两个n*n的矩阵,一旦任意两个非舞伴的男女同学觉得对方都比现任舞伴要好,他们就会抛弃舞伴而在一起.为了杜绝这种现象,求每个男的最后 ...

  2. PHP环境搭建Zend Studio 10.6.2+WampServer2.4

    址:http://www.zend.com/en/products/studio/downloads直接下载地址:http://downloads.zend.com/studio-eclipse/10 ...

  3. Android(java)学习笔记180:多媒体之图形的变化处理

    1. 图形的缩放 (1)布局文件activity_main.xml如下: <LinearLayout xmlns:android="http://schemas.android.com ...

  4. matlab 随笔

    <<matlab高级编程技巧与应用:45个案例分析>> 一. 重新认识向量化编程 1.向量化编程与循环的比较 2.预分配内存更好 3.matlab中是列优先 4.归一化 数据归 ...

  5. Perl: hash散列转换为Json报错集, perl.c,v $$Revision: 4.0.1.8 $$Date: 1993/02/05 19:39:30 $

    bash-2.03$ ./u_json.pl Can't locate object method "encode" via package "JSON" at ...

  6. java生成随机字符

    1.生成的字符串每个位置都有可能是str中的一个字母或数字,需要导入的包是import java.util.Random; //length用户要求产生字符串的长度 public static Str ...

  7. JAVA基础——网络编程之网络链接

    一.网络编程基本概念 1.OSI与TCP/IP体系模型 2.IP和端口 解决了文章最开始提到的定位的问题. IP在互联网中能唯一标识一台计算机,是每一台计算机的唯一标识(身份证):网络编程是和远程计算 ...

  8. TWaver可视化编辑器的前世今生(三)Doodle编辑器

    插播一则广告(长期有效)TWaver需要在武汉招JavaScript工程师若干要求:对前端技术(JavasScript.HTML.CSS),对可视化技术(Canvas.WebGL)有浓厚的兴趣基础不好 ...

  9. sublime中项目无法添加文件夹

    问题记录 mac中,使用vue init webpack project 后,在sublime中打开,但是添加新文件夹和删除,总提示没有权限, 然后用git提交吧 也不行,每次都要sudo 出现的提示 ...

  10. Linux网络技术管理

    1. OSI七层模型和TCP/IP四层模型 1.1 osi 七层模型 Open System interconnection,开放系统互连参考模型是国际标准化组织(ISO)制定的一个用于计算机或通信系 ...