Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

典型的dp题

class Solution {
public:
int minDistance(string word1, string word2) {
int row=word1.size()+;
int col=word2.size()+;
int isEqual=; int dp[row][col];
for(int i=;i<col;++i){
dp[][i]=i;
}
for(int i=;i<row;++i){
dp[i][]=i;
}
for(int i=;i<row;++i)
for(int j=;j<col;++j){
isEqual=(word1[i-]==word2[j-])?:;
dp[i][j]=min(dp[i-][j]+,min(dp[i][j-]+,dp[i-][j-]+isEqual));
}
return dp[row-][col-];
}
};

Edit Distance(动态规划,难)的更多相关文章

  1. 行编辑距离Edit Distance——动态规划

    题目描写叙述: 给定一个源串和目标串.可以对源串进行例如以下操作:  1. 在给定位置上插入一个字符  2. 替换随意字符  3. 删除随意字符 写一个程序.返回最小操作数,使得对源串进行这些操作后等 ...

  2. 动态规划 求解 Minimum Edit Distance

    http://blog.csdn.net/abcjennifer/article/details/7735272 自然语言处理(NLP)中,有一个基本问题就是求两个字符串的minimal Edit D ...

  3. leetCode 72.Edit Distance (编辑距离) 解题思路和方法

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  4. 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance

    引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...

  5. Leetcode之动态规划(DP)专题-72. 编辑距离(Edit Distance)

    Leetcode之动态规划(DP)专题-72. 编辑距离(Edit Distance) 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可 ...

  6. Edit Distance——经典的动态规划问题

    题目描述Edit DistanceGiven two words word1 and word2, find the minimum number of steps required to conve ...

  7. [LeetCode] One Edit Distance 一个编辑距离

    Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...

  8. [LeetCode] Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  9. Edit Distance

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

随机推荐

  1. HDU 5416 CRB and Tree (技巧)

    题意:给一棵n个节点的树(无向边),有q个询问,每个询问有一个值s,问有多少点对(u,v)的xor和为s? 注意:(u,v)和(v,u)只算一次.而且u=v也是合法的. 思路:任意点对之间的路径肯定经 ...

  2. Linux Mini 安装 VMware Tools

    1.挂载VMware Tools光盘 mount -t iso9660 /dev/cdrom /opt/ 2.安装依赖,安装Tools 将文件复制至 tmp目录解压VMwareTools-10.0.6 ...

  3. vue-cli中添加使用less

    在vue-cli中构建的项目是可以使用less的,但是查看package.json可以发现,并没有less相关的插件,所以我们需要自行安装. 第一步:安装 npm install less less- ...

  4. 定位 absolute和relative比较

    absolute:脱离原来位置定位.是相对于最近的有定位的父级进行定位;如果没有有定位的父级元素,就相对文档进行定位 relative:保留原来位置进行定位,相对于自己原来的位置进行定位 下面举两个例 ...

  5. KVM中的网络简介(qemu-kvm)

    emu-kvm主要向客户机提供了如下4种不同模式的网络: 1)基于网桥(bridge)的虚拟网卡 2)基于NAT(Network Addresss Translation)的虚拟网络 3)QEMU内置 ...

  6. Ubuntu配置NFS服务器

    NFS(Network File System)即网络文件系统,是FreeBSD支持的文件系统中的一种,它允许网络中的计算机之间通过TCP/IP网络共享资源.在NFS的应用中,本地NFS的客户端应用可 ...

  7. You must specify a valid lifecycle phase or a goal in the format <plugin-prefix>:<goal> or <plugin-group-id>:<plugin-artifact-id>[:<plugin-version>]:<goal>. Available lifecycle phases are: validate, i

    [ERROR] Unknown lifecycle phase "mvn". You must specify a valid lifecycle phase or a goal ...

  8. Apollo配置中心的使用

    1. 自己搭建Apollo配置中心 碰到如下错误: nested exception is org.hibernate.HibernateException: Access to DialectRes ...

  9. python007 Python3 数字(Number)

    var1 = 1 var2 = 10 您也可以使用del语句删除一些数字对象的引用.del语句的语法是: del var1[,var2[,var3[....,varN]]]] 您可以通过使用del语句 ...

  10. 什么是Istio

    本文主要是对Istio Prelim 1.0(https://preliminary.istio.io/docs/)的翻译 Istio:一种开放式平台,用于连接,管理和保护微服务. Istio提供了一 ...