题意: 给出一个N*N的地图N   地图里面有K个障碍     你每次可以选择一条直线 消除这条直线上的所有障碍  (直线只能和列和行平行)

问最少要消除几次

题解: 如果(x,y)上有一个障碍 则把X加入点集 V1 、Y加入点集V2   并且X Y连一条边  这样构成一个新图

如果选择 V1中的点 X 那么就相当于消去 (X,y)中的所有Y    要找使最小点覆盖 那就是跑一遍 匈牙利就行了 详细证明见二分图最小点覆盖König定理

其中 x y需要连单向边 不然会造成混乱 因为x=1 y=1是不同的含义

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=;
int n,k;
int mp[maxn][maxn];
int girl[maxn];
int used[maxn];
bool find(int x){
int i,j;
for(j=;j<=n;j++){
if(mp[x][j]==&&used[j]==){
used[j]=;
if(girl[j]==||find(girl[j])){
girl[j]=x;
return ;
}
}
}
return ;
}
int main(){
cin>>n>>k;
for(int i=;i<=k;i++){
int a,b;
scanf("%d%d",&a,&b);//建边
mp[a][b]=;
}
int sum=;
for(int i=;i<=n;i++){
memset(used,,sizeof(used));//每次要初始化 因为used是用于判断之前有没有用过 什么叫之前有没用用过 比如进入3的递归,used[2]=1,3 和2匹配 2已经在之前已经有归属了 现在要进行拆边 find(girl(j)) 此时假设girl(j)=5,5就不能和2匹配了,因为现在进行拆边操作时逻辑上已经认定 上层递归的used[2]=1 已经用了2
if(find(i))sum++;
}
cout<<sum<<endl;
return ;
}

Asteroids POJ - 3041 匈牙利算法+最小点覆盖König定理的更多相关文章

  1. POJ 3041 Asteroids(二分图 && 匈牙利算法 && 最小点覆盖)

    嗯... 题目链接:http://poj.org/problem?id=3041 这道题的思想比较奇特: 把x坐标.y坐标分别看成是二分图两边的点,如果(x,y)上有行星,则将(x,y)之间连一条边, ...

  2. POJ 3041 匈牙利算法模板题

    一开始预习是百度的算法 然后学习了一下 然后找到了学长的ppt 又学习了一下.. 发现..居然不一样... 找了模板题试了试..百度的不好用 反正就是wa了..果然还是应当跟着学长混.. 图两边的点分 ...

  3. 最小点覆盖(König定理)

    König定理是一个二分图中很重要的定理,它的意思是,一个二分图中的最大匹配数等于这个图中的最小点覆盖数.如果你还不知道什么是最小点覆盖,我也在这里说一下:假如选了一个点就相当于覆盖了以它为端点的所有 ...

  4. 二分图最小点覆盖König定理的简单证明 (加入自己理解)

    第一次更改:http://blog.sina.com.cn/s/blog_51cea4040100h152.html 讲的更细致 增广路:https://blog.csdn.net/qq_374572 ...

  5. Asteroids POJ - 3041 二分图最小点覆盖

       Asteroids POJ - 3041 Bessie wants to navigate her spaceship through a dangerous asteroid field in ...

  6. Asteroids POJ - 3041

    Asteroids POJ - 3041 题目大意:N*N的地图里,存在一些小行星,Bessie有个很牛x但又很耗蓝的武器,一次可以消灭一行或者一列的所有小行星,问最少使用多少次这个武器可以消灭所有的 ...

  7. poj - 3041 Asteroids (二分图最大匹配+匈牙利算法)

    http://poj.org/problem?id=3041 在n*n的网格中有K颗小行星,小行星i的位置是(Ri,Ci),现在有一个强有力的武器能够用一发光速将一整行或一整列的小行星轰为灰烬,想要利 ...

  8. Asteroids POJ - 3041 【最小点覆盖集】

    Bessie wants to navigate her spaceship through a dangerous asteroid field in the shape of an N x N g ...

  9. poj3041 Asteroids 匈牙利算法 最小点集覆盖问题=二分图最大匹配

    /** 题目:poj3041 Asteroids 链接:http://poj.org/problem?id=3041 题意:给定n*n的矩阵,'X'表示障碍物,'.'表示空格;你有一把枪,每一发子弹可 ...

随机推荐

  1. 蛙蛙推荐: TensorFlow Hello World 之平面拟合

    tensorflow 已经发布了 2.0 alpha 版本,所以是时候学一波 tf 了.官方教程有个平面拟合的类似Hello World的例子,但没什么解释,新手理解起来比较困难. 所以本文对这个案例 ...

  2. python之面向对象3

     面向对象介绍 一.面向对象和面向过程 面向过程:核心过程二字,过程即解决问题的步骤,就是先干什么后干什么 基于该思想写程序就好比在这是一条流水线,是一种机械式的思维方式 优点:复杂的过程流程化 缺点 ...

  3. Sparse Principal Component Analysis via Rotation and Truncation

    目录 对以往一些SPCA算法复杂度的总结 Notation 论文概述 原始问题 问题的变种 算法 固定\(X\),计算\(R\) 固定\(R\),求解\(X\) (\(Z =VR^{\mathrm{T ...

  4. Node.js api接口和SQL数据库关联

    数据库表创建 服务器环境配置.连接 .操作.数据库 API接口  原则:

  5. SVN插件和Tomcat插件地址

    SVN插件: http://subclipse.tigris.org/update_1.8.x Tomcat插件: http://tomcatplugin.sf.net/update 备注:如果svn ...

  6. Win10系统如何安装Linux Mint

    导读 随着windows10系统免费升级期限的靠近,越来越多朋友都将自己的电脑系统升级到了win10正式版.今天,小编就要在这里为大家分享Windows10系统安装Linux Mint的方法,希望能够 ...

  7. rest-framework总结

    1. CBV: pass 2 .APIView class BookView(APIView):pass url(r'^books/$', views.BookView.as_view(),name= ...

  8. Java Core - 序列化和反序列化

    把对象转换为字节序列的过程称为对象的序列化 把字节序列恢复成对象的过程称为对象的反序列化 一.对象的序列化的应用: 1.把对象的字节序列永久地保存到硬盘上,通常存放在一个文件中. 2.在网络上传送对象 ...

  9. ubuntu安装chkconfig.deb系统服务管理工具

    chkconfig简介:chkconfig命令主要用来更新(启动或停止)和查询系统服务的运行级信息. 参数用法:   --add 增加所指定的系统服务,让chkconfig指令得以管理它,并同时在系统 ...

  10. CRM系统设计方案

    CRM系统设计方案 - 百度文库https://wenku.baidu.com/view/a34eebeb0242a8956bece473.html 服务支持http://www.uf-crm.com ...