显然构造出生成函数,对体积v的物品,生成函数为1+xv+x2v+……=1/(1-xv)。将所有生成函数乘起来得到的多项式即为答案,设为F(x),即F(x)=1/∏(1-xvi)。但这个多项式的项数是Σvi级别的,无法直接分治FFT卷起来。

  我们要降低多项式的次数,于是考虑取对数,化乘为加,得到lnF(x)=-Σln(1-xvi)。只要对每个多项式求出ln加起来再exp回去即可。

  考虑怎么对这个特殊形式的多项式求ln。对ln(1-xv)求导,得ln(1-xv)'=(1-xv)'/(1-xv)=-vxv-1/(1-xv)=-vΣx(k+1)v-1,再积分得-vΣx(k+1)v/(k+1)v=-Σxkv/k(k>=1)。注意到由调和级数,总共只有mlogm项要加起来。然后多项式exp即可得到F(x)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define P 998244353
#define N 140010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,t,a[N],f[N<<2],g[N<<2],x[N<<2],y[N<<2],r[N<<2],A[N<<2],B[N<<2];
int ksm(int a,int k)
{
int s=1;
for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
return s;
}
int inv(int a){return ksm(a,P-2);}
void DFT(int *a,int n,int g)
{
for (int i=0;i<n;i++) r[i]=(r[i>>1]>>1)|(i&1)*(n>>1);
for (int i=0;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=2;i<=n;i<<=1)
{
int wn=ksm(g,(P-1)/i);
for (int j=0;j<n;j+=i)
{
int w=1;
for (int k=j;k<j+(i>>1);k++,w=1ll*w*wn%P)
{
int x=a[k],y=1ll*w*a[k+(i>>1)]%P;
a[k]=(x+y)%P,a[k+(i>>1)]=(x-y+P)%P;
}
}
}
}
void IDFT(int *a,int n)
{
DFT(a,n,inv(3));
int u=inv(n);
for (int i=0;i<n;i++) a[i]=1ll*a[i]*u%P;
}
void mul(int *a,int *b,int n)
{
DFT(a,n,3),DFT(b,n,3);
for (int i=0;i<n;i++) a[i]=1ll*a[i]*b[i]%P;
IDFT(a,n);
}
void Inv(int *a,int *b,int n)
{
if (n==1) {for (int i=0;i<t;i++) b[i]=0;b[0]=inv(a[0]);return;}
Inv(a,b,n>>1);
for (int i=0;i<n;i++) A[i]=a[i];
for (int i=n;i<(n<<1);i++) A[i]=0;
n<<=1;
DFT(A,n,3),DFT(b,n,3);
for (int i=0;i<n;i++) b[i]=1ll*b[i]*(P+2-1ll*A[i]*b[i]%P)%P;
IDFT(b,n);
n>>=1;
for (int i=n;i<(n<<1);i++) b[i]=0;
}
void trans(int *a,int *b,int n){for (int i=0;i<n;i++) b[i]=1ll*a[i+1]*(i+1)%P;}
void dx(int *a,int *b,int n){b[0]=0;for (int i=1;i<n;i++) b[i]=1ll*a[i-1]*inv(i)%P;}
void Ln(int *a,int t)
{
memset(x,0,sizeof(x)),memset(y,0,sizeof(y));
trans(a,x,t);Inv(a,y,t>>1);mul(x,y,t);dx(x,a,t);
}
void Exp(int *a,int *b,int n)
{
if (n==1){for (int i=0;i<t;i++) b[i]=0;b[0]=1;return;}
Exp(a,b,n>>1);
for (int i=0;i<(n>>1);i++) B[i]=b[i];
for (int i=(n>>1);i<n;i++) B[i]=0;
Ln(B,n);
for (int i=0;i<n;i++) B[i]=(P-B[i]+a[i])%P;
B[0]=(B[0]+1)%P;
for (int i=n;i<(n<<1);i++) B[i]=0;
mul(b,B,n<<1);
for (int i=n;i<(n<<1);i++) b[i]=0;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bag.in","r",stdin);
freopen("bag.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=1;i<=n;i++) a[read()]++;n=m;
for (int i=1;i<=n;i++)
for (int j=i;j<=n;j+=i)
f[j]=(f[j]+1ll*a[i]*inv(j/i))%P;
int t=1;while (t<=(n<<1)) t<<=1;
Exp(f,g,t);
for (int i=1;i<=m;i++) printf("%d\n",g[i]);
return 0;
}

  

Luogu4389 付公主的背包(生成函数+多项式exp)的更多相关文章

  1. 洛谷P4389 付公主的背包--生成函数+多项式

    题目链接戳这里 题目描述 有\(n\)件不同的商品,每件物品都有无限个,输出总体积为\([1,m]\)的方案数 思路 直接跑背包有\(30\) 考虑把每个物品的生成函数设出来,对于一件体积为\(v\) ...

  2. [luogu4389]付公主的背包(多项式exp)

    完全背包方案计数问题的FFT优化.首先写成生成函数的形式:对重量为V的背包,它的生成函数为$\sum\limits_{i=0}^{+\infty}x^{Vi}=\frac{1}{1-x^{V}}$于是 ...

  3. luogu4389 付公主的背包

    题目链接:洛谷 题目大意:现在有$n$个物品,每种物品体积为$v_i$,对任意$s\in [1,m]$,求背包恰好装$s$体积的方案数(完全背包问题). 数据范围:$n,m\leq 10^5$ 这道题 ...

  4. 洛谷P4389 付公主的背包 [生成函数,NTT]

    传送门 同样是回过头来发现不会做了,要加深一下记忆. 思路 只要听说过生成函数的人相信第一眼都可以想到生成函数. 所以我们要求 \[ ans=\prod \sum_n x^{nV}=\prod \fr ...

  5. 洛谷 P4389 付公主的背包 解题报告

    P4389 付公主的背包 题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装\(10^5\)大小的东西 付公主有\(n\)种商品,她要准备出摊了 每种商品体积为\(V_i\),都有\ ...

  6. LuoguP4389 付公主的背包【生成函数+多项式exp】

    题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装10^5105大小的东西 付公主有n种商品,她要准备出摊了 每种商品体积为Vi,都有10^5105件 给定m,对于s\in [1,m ...

  7. 【Luogu4389】付公主的背包

    题目 传送门 解法 答案显然是\(n\)个形如\(\sum_{i \geq 1} x^{vi}\)的多项式的卷积 然而直接NTT的时间复杂度是\(O(nm\log n)\) 我们可以把每个多项式求\( ...

  8. LOJ6077「2017 山东一轮集训 Day7」逆序对 (生成函数+多项式exp?朴素DP!)

    题面 给定 n , k n,k n,k ,求长度为 n n n 逆序对个数为 k k k 的排列个数,对 1 e 9 + 7 \rm1e9+7 1e9+7 取模. 1 ≤ n , k ≤ 100   ...

  9. luoguP4389 付公主的背包 多项式exp

    %%%dkw 话说这是个论文题来着... 考虑生成函数\(OGF\) 对于价值为\(v\)的物品,由于有\(10^5\)的件数,可以看做无限个 那么,其生成函数为\(x^0 + x^{v} + x^{ ...

随机推荐

  1. Java多线程核心技术(六)线程组与线程异常

    本文应注重掌握如下知识点: 线程组的使用 如何切换线程状态 SimpleDataFormat 类与多线程的解决办法 如何处理线程的异常 1.线程的状态 线程对象在不同运行时期有不同的状态,状态信息就处 ...

  2. 高并发下的Id生成器

    考虑到sql server以及c#,最多只能用decimal类型,也就是29位的数字,做了下面这个数字型id生成器: class Program { static void Main(string[] ...

  3. (转)C#中的那些全局异常捕获

    C#中的那些全局异常捕获(原文链接:http://www.cnblogs.com/taomylife/p/4528179.html)   1.WPF全局捕获异常       public partia ...

  4. 写了一个Windows API Viewer,提供VBA语句的导出功能。提供两万多个API的MSDN链接内容的本地查询

    始出处:http://www.cnblogs.com/Charltsing/p/APIViewer.html QQ:564955427,QQ群:550672198 世面上的API Viewer已经不少 ...

  5. os.path 下的各方法

    一.os.path os.path.abspath(file) #拿到当前程序(文件)的绝对目录. os.path.split(pathname) # 返回一个元组,第零个元素为文件上级绝对目录,第一 ...

  6. RabbitMQ消息的交换

    消息的交换 目录 RabbitMQ-从基础到实战(1)— Hello RabbitMQ RabbitMQ-从基础到实战(2)— 防止消息丢失 1.简介 在前面的例子中,每个消息都只对应一个消费者,即使 ...

  7. Vue向后端请求课程展示

    1.Vue结构 App.vue <template> <div id="app"> <router-link to="/index" ...

  8. Nginx三部曲(1)基础

    我们会告诉你 Nginx 是如何工作的,其背后的概念有哪些,以及如何优化它以提升应用程序的性能.还会告诉你如何安装,如何启动.运行. 这个教程包括三节: 基础概念——你可以了解命令(directive ...

  9. 硬盘扩容9999T

    win+r运行创建命令:subst H: d:\123说明:H指的是想要创建的盘符,d:\123是文件路径 删除命令subst H: d/说明 :H指的是已创建的盘符,/d指的是删除的意思 注意新盘符 ...

  10. js实现input的赋值

    input框赋值如下所示,是一个文本框的html代码,实际开发中,要涉及到将数据库中的数据取出然后放入input框中. <input id="name1" name=&quo ...