显然构造出生成函数,对体积v的物品,生成函数为1+xv+x2v+……=1/(1-xv)。将所有生成函数乘起来得到的多项式即为答案,设为F(x),即F(x)=1/∏(1-xvi)。但这个多项式的项数是Σvi级别的,无法直接分治FFT卷起来。

  我们要降低多项式的次数,于是考虑取对数,化乘为加,得到lnF(x)=-Σln(1-xvi)。只要对每个多项式求出ln加起来再exp回去即可。

  考虑怎么对这个特殊形式的多项式求ln。对ln(1-xv)求导,得ln(1-xv)'=(1-xv)'/(1-xv)=-vxv-1/(1-xv)=-vΣx(k+1)v-1,再积分得-vΣx(k+1)v/(k+1)v=-Σxkv/k(k>=1)。注意到由调和级数,总共只有mlogm项要加起来。然后多项式exp即可得到F(x)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define P 998244353
#define N 140010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,t,a[N],f[N<<2],g[N<<2],x[N<<2],y[N<<2],r[N<<2],A[N<<2],B[N<<2];
int ksm(int a,int k)
{
int s=1;
for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
return s;
}
int inv(int a){return ksm(a,P-2);}
void DFT(int *a,int n,int g)
{
for (int i=0;i<n;i++) r[i]=(r[i>>1]>>1)|(i&1)*(n>>1);
for (int i=0;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=2;i<=n;i<<=1)
{
int wn=ksm(g,(P-1)/i);
for (int j=0;j<n;j+=i)
{
int w=1;
for (int k=j;k<j+(i>>1);k++,w=1ll*w*wn%P)
{
int x=a[k],y=1ll*w*a[k+(i>>1)]%P;
a[k]=(x+y)%P,a[k+(i>>1)]=(x-y+P)%P;
}
}
}
}
void IDFT(int *a,int n)
{
DFT(a,n,inv(3));
int u=inv(n);
for (int i=0;i<n;i++) a[i]=1ll*a[i]*u%P;
}
void mul(int *a,int *b,int n)
{
DFT(a,n,3),DFT(b,n,3);
for (int i=0;i<n;i++) a[i]=1ll*a[i]*b[i]%P;
IDFT(a,n);
}
void Inv(int *a,int *b,int n)
{
if (n==1) {for (int i=0;i<t;i++) b[i]=0;b[0]=inv(a[0]);return;}
Inv(a,b,n>>1);
for (int i=0;i<n;i++) A[i]=a[i];
for (int i=n;i<(n<<1);i++) A[i]=0;
n<<=1;
DFT(A,n,3),DFT(b,n,3);
for (int i=0;i<n;i++) b[i]=1ll*b[i]*(P+2-1ll*A[i]*b[i]%P)%P;
IDFT(b,n);
n>>=1;
for (int i=n;i<(n<<1);i++) b[i]=0;
}
void trans(int *a,int *b,int n){for (int i=0;i<n;i++) b[i]=1ll*a[i+1]*(i+1)%P;}
void dx(int *a,int *b,int n){b[0]=0;for (int i=1;i<n;i++) b[i]=1ll*a[i-1]*inv(i)%P;}
void Ln(int *a,int t)
{
memset(x,0,sizeof(x)),memset(y,0,sizeof(y));
trans(a,x,t);Inv(a,y,t>>1);mul(x,y,t);dx(x,a,t);
}
void Exp(int *a,int *b,int n)
{
if (n==1){for (int i=0;i<t;i++) b[i]=0;b[0]=1;return;}
Exp(a,b,n>>1);
for (int i=0;i<(n>>1);i++) B[i]=b[i];
for (int i=(n>>1);i<n;i++) B[i]=0;
Ln(B,n);
for (int i=0;i<n;i++) B[i]=(P-B[i]+a[i])%P;
B[0]=(B[0]+1)%P;
for (int i=n;i<(n<<1);i++) B[i]=0;
mul(b,B,n<<1);
for (int i=n;i<(n<<1);i++) b[i]=0;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bag.in","r",stdin);
freopen("bag.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=1;i<=n;i++) a[read()]++;n=m;
for (int i=1;i<=n;i++)
for (int j=i;j<=n;j+=i)
f[j]=(f[j]+1ll*a[i]*inv(j/i))%P;
int t=1;while (t<=(n<<1)) t<<=1;
Exp(f,g,t);
for (int i=1;i<=m;i++) printf("%d\n",g[i]);
return 0;
}

  

Luogu4389 付公主的背包(生成函数+多项式exp)的更多相关文章

  1. 洛谷P4389 付公主的背包--生成函数+多项式

    题目链接戳这里 题目描述 有\(n\)件不同的商品,每件物品都有无限个,输出总体积为\([1,m]\)的方案数 思路 直接跑背包有\(30\) 考虑把每个物品的生成函数设出来,对于一件体积为\(v\) ...

  2. [luogu4389]付公主的背包(多项式exp)

    完全背包方案计数问题的FFT优化.首先写成生成函数的形式:对重量为V的背包,它的生成函数为$\sum\limits_{i=0}^{+\infty}x^{Vi}=\frac{1}{1-x^{V}}$于是 ...

  3. luogu4389 付公主的背包

    题目链接:洛谷 题目大意:现在有$n$个物品,每种物品体积为$v_i$,对任意$s\in [1,m]$,求背包恰好装$s$体积的方案数(完全背包问题). 数据范围:$n,m\leq 10^5$ 这道题 ...

  4. 洛谷P4389 付公主的背包 [生成函数,NTT]

    传送门 同样是回过头来发现不会做了,要加深一下记忆. 思路 只要听说过生成函数的人相信第一眼都可以想到生成函数. 所以我们要求 \[ ans=\prod \sum_n x^{nV}=\prod \fr ...

  5. 洛谷 P4389 付公主的背包 解题报告

    P4389 付公主的背包 题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装\(10^5\)大小的东西 付公主有\(n\)种商品,她要准备出摊了 每种商品体积为\(V_i\),都有\ ...

  6. LuoguP4389 付公主的背包【生成函数+多项式exp】

    题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装10^5105大小的东西 付公主有n种商品,她要准备出摊了 每种商品体积为Vi,都有10^5105件 给定m,对于s\in [1,m ...

  7. 【Luogu4389】付公主的背包

    题目 传送门 解法 答案显然是\(n\)个形如\(\sum_{i \geq 1} x^{vi}\)的多项式的卷积 然而直接NTT的时间复杂度是\(O(nm\log n)\) 我们可以把每个多项式求\( ...

  8. LOJ6077「2017 山东一轮集训 Day7」逆序对 (生成函数+多项式exp?朴素DP!)

    题面 给定 n , k n,k n,k ,求长度为 n n n 逆序对个数为 k k k 的排列个数,对 1 e 9 + 7 \rm1e9+7 1e9+7 取模. 1 ≤ n , k ≤ 100   ...

  9. luoguP4389 付公主的背包 多项式exp

    %%%dkw 话说这是个论文题来着... 考虑生成函数\(OGF\) 对于价值为\(v\)的物品,由于有\(10^5\)的件数,可以看做无限个 那么,其生成函数为\(x^0 + x^{v} + x^{ ...

随机推荐

  1. HBase篇(4)-你不知道的HFile

    [每日五分钟搞定大数据]系列,HBase第四篇 这一篇你可以知道, HFile的内部结构? HBase读文件细粒度的过程? HBase随机读写快除了MemStore之外的原因? 上一篇中提到了Hbas ...

  2. 配置Apache虚拟主机

    实验环境 一台最小化安装的CentOS 7.3虚拟机 配置基础环境 1. 安装apache yum install -y httpd 2. 建立虚拟主机的根目录 mkdir /var/wwwroot ...

  3. Python股票分析系列——数据整理和绘制.p2

    该系列视频已经搬运至bilibili: 点击查看 欢迎来到Python for Finance教程系列的第2部分. 在本教程中,我们将利用我们的股票数据进一步分解一些基本的数据操作和可视化. 我们将要 ...

  4. k8s

    https://www.cnblogs.com/sheng-jie/p/10591794.html

  5. Python全栈开发之路 【第十六篇】:jQuey的动画效果、属性操作、文档操作、input的value

    01-动画效果 show 显示 概念:显示隐藏的匹配元素 语法:show(speed,callback) 参数: speed:三种预定速度之一的字符串('slow','normal','fast')或 ...

  6. Paypal2017实习生-软件开发-B卷

    1. [编程|15分] Calculate survival fishes时间限制:1秒空间限制:32768K题目描述Given two zero-indexed arrays A and B con ...

  7. C. Edgy Trees

    链接 [https://codeforces.com/contest/1139/problem/C] 题意 给你n个点,n-1个边,无向的.有red和black的. k表示经过这k个点.可以跨其他点 ...

  8. 牛客练习赛B题 筱玛的排列(找递推规律)

    链接:https://ac.nowcoder.com/acm/contest/342/B来源:牛客网 筱玛的排列 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语 ...

  9. Python_动态参数、名称空间、作用域、作用域链、加载顺序、函数的嵌套、global、nonlocal

    1.动态参数 当实参数量与形参数量相等时,参数传递正常. def func1(a, b, c): pass func1(1, 2, 3) 当实参数量与形参数量不相等时,则会报错. def func1( ...

  10. 什么是IaaS, PaaS和SaaS及其区别

    IaaS, PaaS和SaaS是云计算的三种服务模式. . SaaS:Software-as-a-Service(软件即服务)提供给客户的服务是运营商运行在云计算基础设施上的应用程序,用户可以在各种设 ...