Min_25筛学习笔记
感觉好好用啊
Luogu上的杜教筛模版题一发 Min_25抢到了 rank1
$ Updated \ on 11.29 $被 STO txc ORZ踩爆啦
前言
$ Min$_$25$筛可以求积性函数的前缀和
要求$ f(p_i)为一个多项式,f(p_i^{k_i})可以快速计算$
以下部分暂时忽略$ 1$,即只考虑最小质因子$ \geq 2$的那些数
先考虑素数贡献
我们定义$ sp(n)$表示$\sum\limits_{i=1}^n f(p_i)$即前$ n$个素数的积性函数和
这里我们先假设$ f$对于质数的计算是完全积性函数
$ P_i$表示线筛求出的第$ i$小的质数
令$ g(n,i)$表示$ \sum\limits_{j=2}^n [j的最小质因数>P_i或j是质数]f(j)$
在这里$ f(j)$表示假设$ j$是质数,以质数方式带入函数计算的结果
由于合数会被筛掉因而不会影响答案
考虑怎么计算$ g(n,i)$
类似线性筛的方式每次筛掉一批合数
如果$P_i^2>n$则有$ g(n,i)=g(n,i-1)$
因为第$ i$个质数能筛掉的最小合数是$ P_i^2$
因此筛质数只需要筛到$ \sqrt n$即可
如果$ P_i^2<=n$有$ g(n,i)=g(n,i-1)-f(P_i)*(\ g( \frac{n}{P_i},i-1)-sp_{i-1}\ )$
原理是假设$ P_i$是一个质因数,它能产生的合数贡献是$ f(P_i)*g( \frac{n}{P_i} ,i-1)$
但是由于$ P_i$不一定是最小质因数,还要加回多减的小质数即$ sp_{i-1}$
由于满足$ f$是完全积性函数,上面部分还算挺清真的
我们需要求的只是$ g(x,INF)$
注意我们发现我们需要求的$ g(x,INF)$只需要满足存在$ d$使得$ x=\frac{n}{d} $即可
可以提前整数分块这样只需要计算$ \sqrt n$数量级的$ g(x,INF)$即可
可以通过滚动数组递推的方式完成这一部分
我们令$ S(n,m)$表示$ \sum\limits_{i=2}^n[i的最小质因数 \geq P_m]f(i)$
显然我们要求的是$ S(n,1)$
递归求解
贡献分两步统计:
质数贡献:$ g(n,INF)-sp(m-1)$
即去掉较小的质数以外其他质数都会被计算到
合数贡献:$ \sum\limits_{k=m}^{P_k^2<=n}\sum\limits_{e=1}^{P_k^{e+1}<=n}f(P_k^e)S(\frac{n}{P_k^e},k+1)+f(P_k^{e+1})$
即枚举当前选择的最小质因数以及数量转移,同时计算只选择多于两个当前因数即不往后转移的合数情况
这样直接转移就好了
栗子:筛$ \sum\limits_{i=1}^n \phi(i)$
发现$ phi(P_i)=P_i-1$即对于质数的计算不是一个完全积性函数
这时候需要拆开计算
令$ g(P_i)=P_i$,$ h(P_i)=1$
这样分成两个完全积性函数,分别筛质数求值然后相减即可
推$ S(n,m)$的时候不会有影响
筛$ \sum\limits_{i=1}^n \mu(i)$也没有本质区别
传送门:here
$ my \ code:$
#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#define file(x)freopen(x".in","r",stdin);freopen(x".out","w",stdout)
#define rt register unsigned
#define l putchar('\n')
#define ll long long
#define r read()
using namespace std;
inline ll read(){
ll x = ; char zf = ; char ch = getchar();
while (ch != '-' && !isdigit(ch)) ch = getchar();
if (ch == '-') zf = -, ch = getchar();
while (isdigit(ch)) x = x * + ch - '', ch = getchar(); return x * zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
int i,j,k,m,n,x,y,z,cnt;
ll sp[],g[];int h[],ss[];bool pri[];
int id1[],id2[],q[],t,sz;
void init(){
sz=sqrt(n);
for(rt i=;i<=sz;i++){
if(!pri[i])ss[++cnt]=i,sp[cnt]=sp[cnt-]+i;
for(rt j=;j<=cnt&&i*ss[j]<=sz;j++){
pri[i*ss[j]]=;
if(i%ss[j]==)break;
}
}
for(rt i=;i<=n;){
const unsigned v=n/i;unsigned R=n/v;
q[++t]=v;if(v<=sz)id1[v]=t;else id2[n/v]=t;
g[t]=(ll)v*(v+)/-;
h[t]=v-;i=R+;
}
}
int id(int x){
if(x<=sz)return id1[x];
return id2[n/x];
}
ll S(int n,int m){
if(n<=||ss[m]>n)return ;
ll ret=g[id(n)]-sp[m-]+m-;//cout<<n<<' '<<m<<endl;
for(rt k=m;ss[k]*ss[k]<=n&&k<=cnt;k++)
for(rt v=ss[k],p1=ss[k]-;(ll)v*ss[k]<=n;v=v*ss[k],p1=p1*ss[k])
ret+=(S(n/v,k+)+ss[k])*p1;//ss[k];
return ret;
} int D(int n,int m){
if(n<=||ss[m]>n)return ;
int ret=h[id(n)]+(m-);//cout<<n<<' '<<m<<endl;
for(rt k=m;ss[k]*ss[k]<=n&&k<=cnt;k++)
ret-=D(n/ss[k],k+);//ss[k];
return ret;
}
int main(){
for(rt T=r;T;T--){
n=r;
if(n==){
cout<<<<' '<<<<endl;
continue;
}
t=cnt=;init();
for(rt i=;i<=cnt;i++){//枚举外层质数
const int v=ss[i]*ss[i];
for(rt j=;j<=t&&v<=q[j];j++){
const int k=id(q[j]/ss[i]);
g[j]-=ss[i]*(g[k]-sp[i-]);
h[j]-=h[k]-i+;
}
}
for(rt i=;i<=t;i++)g[i]-=h[i],h[i]=-h[i];
write(S(n,)+);putchar(' ');
writeln(D(n,)+);
}
return ;
}
Min_25筛学习笔记的更多相关文章
- Min_25筛 学习笔记
这儿只是一个简单说明/概括/总结. 原理见这: https://www.cnblogs.com/cjyyb/p/9185093.html https://www.cnblogs.com/zhoushu ...
- Min_25 筛 学习笔记
原文链接https://www.cnblogs.com/zhouzhendong/p/Min-25.html 前置技能 埃氏筛法 整除分块(这里有提到) 本文概要 1. 问题模型 2. Min_25 ...
- min_25筛学习笔记【待填坑】
看见ntf和pb两位大佬都来学了,然后就不自觉的来学了. 我们考虑这样一个问题. $$ans=\sum_{i=1}^nf(i)$$其中$1\leq n\leq 10^{10}$ 其中$f(i)$是一个 ...
- 洲阁筛 & min_25筛学习笔记
洲阁筛 给定一个积性函数$F(n)$,求$\sum_{i = 1}^{n}F(n)$.并且$F(n)$满足在素数和素数次幂的时候易于计算. 显然有: $\sum_{i = 1}^{n} F(n) = ...
- $Min\_25$筛学习笔记
\(Min\_25\)筛学习笔记 这种神仙东西不写点东西一下就忘了QAQ 资料和代码出处 资料2 资料3 打死我也不承认参考了yyb的 \(Min\_25\)筛可以干嘛?下文中未特殊说明\(P\)均指 ...
- Powerful Number 筛学习笔记
Powerful Number 筛学习笔记 用途 \(Powerful\ number\) 筛可以用来求出一类积性函数的前缀和,最快可以达到根号复杂度. 实现 \(Powerful\ number\) ...
- Min_25筛 学习小记
前言 为什么叫学习小记呢?因为暂时除了模板题就没有做其他的东西了.(雾 这个东西折磨了我一整天,看得我身不如死,只好结合代码理解题解,差点死在机房.(话说半天综合半天竞赛真是害人不浅) 为了以后忘了再 ...
- min-25筛学习笔记
Min_25筛简介 \(\text{min_25}\)筛是一种处理一类积性函数前缀和的算法. 其中这类函数\(f(x)\)要满足\(\sum_{i=1}^{n}[i\in prime]\cdot f( ...
- min_25 筛学习小记
min_25筛 由 dalao min_25 发明的筛子,据说时间复杂度是极其优秀的 \(O(\frac {n^{\frac 3 4}} {\log n})\),常数还小. 1. 质数 \(k\) 次 ...
随机推荐
- 【洛谷P2142 高精度减法】
题目描述 高精度减法 输入输出格式 输入格式: 两个整数a,b(第二个可能比第一个大) 输出格式: 结果(是负数要输出负号) 输入输出样例 输入样例#1: 复制 2 1 输出样例#1: 复制 1 说明 ...
- ImageMagick 笔记: 索引颜色(index color)、锁定图层,透明 png 转 gif (保持清晰度)
今天在处理一张 png 透明背景的图片,大小: 16KB, 尺寸: 400 x 300,用到一段代码,也许对以后有用. /** 带透明背景和阴影的png图片, 转换成 gif, [索引色] + [锁住 ...
- 第十六篇-使用CheckBox实现多项选择
话不多说,先上效果图 屏幕截图方法,全屏截图按键盘print screen就行,活动窗口截图,按住ALT+print screen. 图片默认保存在home/picture路径下.可以通过自带的图片处 ...
- RabbitMQ入门-竞争消费者模式
上一篇讲了个 哈喽World,现在来看看如果存在多个消费者的情况. 生产者: package com.example.demo; import com.rabbitmq.client.Channel; ...
- python学习笔记—Day1
1. python使用<变量名>=<表达式>的方式对变量进行赋值 a=1; python中数分为整数和浮点数 字符串的定义一定要用引号,单引号和双引号是等价的 三引号用来输入包 ...
- 1、CC2530单片机介绍
单片机是一种集成电路芯片,包含中央处理器CPU.随机存储器RAM.只读存储器ROM.输入输出I/O接口.中断控制系统.定时/计数器和通信等多种功能部件. 本教程使用的单片机德州仪器生产的CC2530, ...
- mysql 5.7 启动脚本
最近这段时间,在看mysql,安装了,也应用过,对于生产环境中,一般都选择使用source code安装,在安装的时候可以自定义相关路径和内容,对于生产环境来说更有效.相对于mysql 5.5的安装, ...
- qml: 自定义按钮-- 仿QML自带控件;
import QtQuick 2.0 Rectangle { id: btn; width:; height:; radius:; border.color: "#A3A3A3"; ...
- 时间偏移sql
mysql:select date_sub(str_to_date('2018/8/21','%Y/%m/%d') ,interval 90 day) ; oracle:select to_date( ...
- 虚拟机centos无法连接外网时怎么处理
1. 首先查看service 如果没有启动请启动这2个服务. 2. 在虚拟机那重启网络端口 ifdown ens33 ifup ens33