A1066. Root of AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print ythe root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
typedef struct NODE{
struct NODE* lchild, *rchild;
int key;
int height;
}node;
int getHeight(node* root){
if(root == NULL)
return ;
else return root->height;
}
void updateHeight(node *root){
root->height = max(getHeight(root->lchild), getHeight(root->rchild)) + ;
}
void L(node* &root){
node* temp = root;
root = root->rchild;
updateHeight(root);
temp->rchild = root->lchild;
root->lchild = temp;
updateHeight(temp);
}
void R(node* &root){
node *temp = root;
root = root->lchild;
updateHeight(root);
temp->lchild = root->rchild;
root->rchild = temp;
updateHeight(temp);
}
void insert(node* &root, int key){
if(root == NULL){ //此处可获得插入节点的信息
node* temp = new node;
temp->lchild = NULL;
temp->rchild = NULL;
temp->key = key;
temp->height = ;
root = temp;
return;
}
if(key < root->key){ //此处可获得距离插入节点最近得父节点得信息
insert(root->lchild, key);
updateHeight(root);
if(abs(getHeight(root->lchild) - getHeight(root->rchild)) == ){
if(getHeight(root->lchild->lchild) > getHeight(root->lchild->rchild)){
R(root);
}else{
L(root->lchild);
R(root);
}
}
}else{
insert(root->rchild, key);
updateHeight(root);
if(abs(getHeight(root->lchild) - getHeight(root->rchild)) == ){
if(getHeight(root->rchild->rchild) > getHeight(root->rchild->lchild)){
L(root);
}else{
R(root->rchild);
L(root);
}
}
}
}
int main(){
int N, key;
scanf("%d", &N);
node* root = NULL;
for(int i = ; i < N; i++){
scanf("%d", &key);
insert(root, key);
}
printf("%d", root->key);
cin >> N;
return ;
}
总结:
1、题意:按照题目给出的key的顺序,建立一个平衡二叉搜索树。
2、二叉搜索树的几个关键地方:
- 每个节点使用height来记录自己的高度,叶节点高度为1;
- 获得某个节点高度的函数,主要是由于在获取平衡因子时,有些树的子树是空的,需要返回0,为避免访问空指针,获取节点高度都要通过该函数而非height字段。
- 更新当前节点的高度,应更新为左右子树的最大高度+1。
- 左旋与右旋:一定是三步操作而不是两步(不要忘记新的root的原子树)。注意更新节点高度的先后顺序。
- 插入与建树:插入操作基于二叉搜索树的插入。在root = NULL时进行新建节点并插入,在此处可以获得插入节点的信息。而在递归插入语句处,可以获取插入A节点之后距离A节点最近的父节点。因此在递归插入结束后就要对该节点进行更新高度,并在此处更新完之后检查平衡因子,并做LL、LR、RR、RL旋转。
3、对rootA的左子树做插入,导致rootA的左子树与右子树高度差为2,则对以rootA为根的树旋转。
4、调试的时候,可以取很少的几个节点,然后画出调试过程中树的形状。
A1066. Root of AVL Tree的更多相关文章
- PAT甲级——A1066 Root of AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT_A1066#Root of AVL Tree
Source: PAT A1066 Root of AVL Tree (25 分) Description: An AVL tree is a self-balancing binary search ...
- 04-树5 Root of AVL Tree + AVL树操作集
平衡二叉树-课程视频 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the tw ...
- PAT 1066 Root of AVL Tree[AVL树][难]
1066 Root of AVL Tree (25)(25 分) An AVL tree is a self-balancing binary search tree. In an AVL tree, ...
- PTA (Advanced Level) 1066 Root of AVL Tree
Root of AVL Tree An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of ...
- PAT甲级1066. Root of AVL Tree
PAT甲级1066. Root of AVL Tree 题意: 构造AVL树,返回root点val. 思路: 了解AVL树的基本性质. AVL树 ac代码: C++ // pat1066.cpp : ...
- 04-树4. Root of AVL Tree (25)
04-树4. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue An A ...
- pat04-树4. Root of AVL Tree (25)
04-树4. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue An A ...
- pat1066. Root of AVL Tree (25)
1066. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue An A ...
随机推荐
- python设计模式第十天【观察者模式】
1.应用场景 (1)监听事件驱动程序中的外部事件 (2)监听某个对象的状态变化 (3)发布-订阅模型中,消息出现时通知邮件列表中的订阅者 2. 观察者模式UML图 3. 代码实现: #!/usr/bi ...
- python设计模式第八天【装饰器模式】
1.定义 使用包装的释放扩展类的功能,但是不使用继承 2.使用场景 3.代码实现 #!/usr/bin/env python #! _*_ coding:UTF-8 _*_ def MyDecorat ...
- 思维导图,UML图,程序流程图制作从入门到精通
工具: https://www.processon.com/ 第一 用例图 第二 时序图 第三 流程图
- SSM+shiro及相关插件的整合maven所有依赖,详细注释版,自用,持续更新
整合了SSM+shiro框架,slf4j+logback日志,及一些好用的插件PageHelper,mybatis-generator,Lombok,fastjson等等 <?xml versi ...
- E: Unable to correct problems, you have held broken packages
问题: apt install libmysqlclient-dev Reading package lists... DoneBuilding dependency tree Readi ...
- html5 服務器發送事件
html5允許頁面獲得來自服務器的更新. 單項消息傳送: 頁面獲得服務器的更新. 以前頁面也可以獲得服務器的更新,但必須詢問服務器是否有可用的更新,而服務器發送事件是單向自動發送. 使用服務器發送事件 ...
- python 基础篇
1.编程语言介绍. 1.机器语言:直接用二进制编程,直接对硬件的控制,需对硬件掌握比较深. 优点:执行效率快 缺点:开发效率低下 2.汇编语言:用英文标签代替二进制编写程序,直接对硬件的控制,需对硬件 ...
- WPF中如何调整TabControl的大小,使其跟随Window的大小而改变?
多年不写技术博客,手生的很,也不知道大家都关注什么,最近在研究Wpf及3d模型的展示,碰到很多问题,这个是最后一个问题,写出来小结一下...... WPF中如何调整TabControl的大小,使其跟随 ...
- luogu3702-[SDOI2017]序列计数
Description Alice想要得到一个长度为nn的序列,序列中的数都是不超过mm的正整数,而且这nn个数的和是pp的倍数. Alice还希望,这nn个数中,至少有一个数是质数. Alice想知 ...
- [Codeforces266E]More Queries to Array...——线段树
题目链接: Codeforces266E 题目大意:给出一个序列$a$,要求完成$Q$次操作,操作分为两种:1.$l,r,x$,将$[l,r]$的数都变为$x$.2.$l,r,k$,求$\sum\li ...