转载来源:https://www.cnblogs.com/tanky_woo/archive/2011/01/17/1937728.html

相关文章:

1.Dijkstra算法:

http://www.wutianqi.com/?p=1890

2.Floyd算法:

http://www.wutianqi.com/?p=1903

Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。这时候,就需要使用其他的算法来求解最短路径,Bellman-Ford算法就是其中最常用的一个。该算法由美国数学家理查德•贝尔曼(Richard Bellman, 动态规划的提出者)和小莱斯特•福特(Lester Ford)发明。Bellman-Ford算法的流程如下:
给定图G(V, E)(其中V、E分别为图G的顶点集与边集),源点s,

  • 数组Distant[i]记录从源点s到顶点i的路径长度,初始化数组Distant[n]为, Distant[s]为0;
  • 以下操作循环执行至多n-1次,n为顶点数:
    对于每一条边e(u, v),如果Distant[u] + w(u, v) < Distant[v],则另Distant[v] = Distant[u]+w(u, v)。w(u, v)为边e(u,v)的权值;
    若上述操作没有对Distant进行更新,说明最短路径已经查找完毕,或者部分点不可达,跳出循环。否则执行下次循环;
  • 为了检测图中是否存在负环路,即权值之和小于0的环路。对于每一条边e(u, v),如果存在Distant[u] + w(u, v) < Distant[v]的边,则图中存在负环路,即是说改图无法求出单源最短路径。否则数组Distant[n]中记录的就是源点s到各顶点的最短路径长度。

可知,Bellman-Ford算法寻找单源最短路径的时间复杂度为O(V*E).

首先介绍一下松弛计算。如下图:

松弛计算之前,点B的值是8,但是点A的值加上边上的权重2,得到5,比点B的值(8)小,所以,点B的值减小为5。这个过程的意义是,找到了一条通向B点更短的路线,且该路线是先经过点A,然后通过权重为2的边,到达点B。
当然,如果出现一下情况

则不会修改点B的值,因为3+4>6。
 
Bellman-Ford算法可以大致分为三个部分
第一,初始化所有点。每一个点保存一个值,表示从原点到达这个点的距离,将原点的值设为0,其它的点的值设为无穷大(表示不可达)。
第二,进行循环,循环下标为从1到n-1(n等于图中点的个数)。在循环内部,遍历所有的边,进行松弛计算。
第三,遍历途中所有的边(edge(u,v)),判断是否存在这样情况:
d(v) > d (u) + w(u,v)
则返回false,表示途中存在从源点可达的权为负的回路。
 
之所以需要第三部分的原因,是因为,如果存在从源点可达的权为负的回路。则 应为无法收敛而导致不能求出最短路径。
考虑如下的图:
 

经过第一次遍历后,点B的值变为5,点C的值变为8,这时,注意权重为-10的边,这条边的存在,导致点A的值变为-2。(8+ -10=-2)
 
 

第二次遍历后,点B的值变为3,点C变为6,点A变为-4。正是因为有一条负边在回路中,导致每次遍历后,各个点的值不断变小。
 
在回过来看一下bellman-ford算法的第三部分,遍历所有边,检查是否存在d(v) > d (u) + w(u,v)。因为第二部分循环的次数是定长的,所以如果存在无法收敛的情况,则肯定能够在第三部分中检查出来。比如
 

此时,点A的值为-2,点B的值为5,边AB的权重为5,5 > -2 + 5. 检查出来这条边没有收敛。
 
所以,Bellman-Ford算法可以解决图中有权为负数的边的单源最短路径问。

个人感觉算法导论讲解很不错,把这一章贴出来和大家分享:

24.1 The Bellman-Ford algorithm

The Bellman-Ford algorithm solves the single-source shortest-paths problem in the general case in which edge weights may be negative. Given a weighted, directed graph G = (VE) with source s and weight function w : E → R, the Bellman-Ford algorithm returns a boolean value indicating whether or not there is a negative-weight cycle that is reachable from the source. If there is such a cycle, the algorithm indicates that no solution exists. If there is no such cycle, the algorithm produces the shortest paths and their weights.

The algorithm uses relaxation, progressively decreasing an estimate d[v] on the weight of a shortest path from the source s to each vertex v ∈ V until it achieves the actual shortest-path weight δ(sv). The algorithm returns TRUE if and only if the graph contains no negative-weight cycles that are reachable from the source.

BELLMAN-FORD(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i1 to |V[G]| - 1
3 do for each edge (u, v) ∈ E[G]
4 do RELAX(u, v, w)
5 for each edge (u, v) ∈ E[G]
6 do if d[v] > d[u] + w(u, v)
7 then return FALSE
8 return TRUE

Figure 24.4 shows the execution of the Bellman-Ford algorithm on a graph with 5 vertices. After initializing the dand π values of all vertices in line 1, the algorithm makes |V| – 1 passes over the edges of the graph. Each pass is one iteration of the for loop of lines 2-4 and consists of relaxing each edge of the graph once. Figures 24.4(b)-(e) show the state of the algorithm after each of the four passes over the edges. After making |V|- 1 passes, lines 5-8 check for a negative-weight cycle and return the appropriate boolean value. (We’ll see a little later why this check works.)

(单击图片可以放大)

Figure 24.4: The execution of the Bellman-Ford algorithm. The source is vertex s. The d values are shown within the vertices, and shaded edges indicate predecessor values: if edge (u, v) is shaded, then π[v] = u. In this particular example, each pass relaxes the edges in the order (t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y). (a) The situation just before the first pass over the edges. (b)-(e) The situation after each successive pass over the edges. The d and π values in part (e) are the final values. The Bellman-Ford algorithm returns TRUE in this example.

The Bellman-Ford algorithm runs in time O(V E), since the initialization in line 1 takes Θ(V) time, each of the |V| – 1 passes over the edges in lines 2-4 takes Θ(E) time, and the for loop of lines 5-7 takes O(E) time.

以下是Bellman-Ford代码:


/*
* About:  Bellman-Ford算法
* Author: Tanky Woo
* Blog:   www.WuTianqi.com
*/
 
#include <iostream>
using namespace std;
const int maxnum = ;
const int maxint = ;
 
// 边,
typedef struct Edge{
    int u, v;    // 起点,重点
    int weight;  // 边的权值
}Edge;
 
Edge edge[maxnum];     // 保存边的值
int  dist[maxnum];     // 结点到源点最小距离
 
int nodenum, edgenum, source;    // 结点数,边数,源点
 
// 初始化图
void init()
{
    // 输入结点数,边数,源点
    cin >> nodenum >> edgenum >> source;
    for(int i=; i<=nodenum; ++i)
        dist[i] = maxint;
    dist[source] = ;
    for(int i=; i<=edgenum; ++i)
    {
        cin >> edge[i].u >> edge[i].v >> edge[i].weight;
        if(edge[i].u == source)          //注意这里设置初始情况
            dist[edge[i].v] = edge[i].weight;
    }
}
 
// 松弛计算
void relax(int u, int v, int weight)
{
    if(dist[v] > dist[u] + weight)
        dist[v] = dist[u] + weight;
}
 
bool Bellman_Ford()
{
    for(int i=; i<=nodenum-; ++i)
        for(int j=; j<=edgenum; ++j)
            relax(edge[j].u, edge[j].v, edge[j].weight);
    bool flag = ;
    // 判断是否有负环路
    for(int i=; i<=edgenum; ++i)
        if(dist[edge[i].v] > dist[edge[i].u] + edge[i].weight)
        {
            flag = ;
            break;
        }
    return flag;
}
int main()
{
    //freopen("input3.txt", "r", stdin);
    init();
    if(Bellman_Ford())
        for(int i =  ;i <= nodenum; i++)
            cout << dist[i] << endl;
    return ;
}

<转载>bellman-ford算法的更多相关文章

  1. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...

  2. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  3. Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】

    题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...

  4. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  5. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  6. ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)

    两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...

  7. 图论算法——最短路径Dijkstra,Floyd,Bellman Ford

    算法名称 适用范围 算法过程 Dijkstra 无负权 从s开始,选择尚未完成的点中,distance最小的点,对其所有边进行松弛:直到所有结点都已完成 Bellman-Ford 可用有负权 依次对所 ...

  8. POJ 2240 Arbitrage (Bellman Ford判正环)

    Arbitrage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:27167   Accepted: 11440 Descri ...

  9. poj1860 兑换货币(bellman ford判断正环)

    传送门:点击打开链接 题目大意:一个城市有n种货币,m个货币交换点,你有v的钱,每个交换点只能交换两种货币,(A换B或者B换A),每一次交换都有独特的汇率和手续费,问你存不存在一种换法使原来的钱更多. ...

  10. ACM/ICPC 之 Bellman Ford练习题(ZOJ1791(POJ1613))

    这道题稍复杂一些,需要掌握字符串输入的处理+限制了可以行走的时间. ZOJ1791(POJ1613)-Cave Raider //限制行走时间的最短路 //POJ1613-ZOJ1791 //Time ...

随机推荐

  1. Word设置多级标题

    选中标题1的内容,点击编号图标,选中一个经典的编号模板,如下图 之后,再次点击编号图标,然后选中“定义新的多级列表”,将打开一个对话框 确保标题1的标号正确: 接着,确保标题2的编号正确: 依次类推, ...

  2. 404.17 - 动态内容通过通配符 MIME 映射映射到静态文件处理程序

    刚刚重装了系统,原有的ASP.NET工程下面的WebService无法运行,如下: 404.17 - 动态内容通过通配符 MIME 映射映射到静态文件处理程序 微软的提示,是做三项更改,但是我改了之后 ...

  3. Java8新特性_stream API 练习

    交易员类 public class Trader { private String name; private String city; public Trader() { } public Trad ...

  4. Mybatis中#{}和${}传参的区别及#和$的区别小结

    最近在用mybatis,之前用过ibatis,总体来说差不多,不过还是遇到了不少问题,再次记录下, 比如说用#{},和 ${}传参的区别, 使用#传入参数是,sql语句解析是会加上"&quo ...

  5. 【bzoj 1143】[CTSC2008]祭祀river

    Description 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成 ...

  6. 由JDBC而来的对Class.forName()用法发散

    昨日在帮一个学习java的小伙子指导JDBC链接数据库时,在对数据库驱动进行加载时,用到Class.forName(),一直都是照葫芦画瓢,对这种写法一直不是太理解,故查询了相关文档后,将心得记录一下 ...

  7. yum upgrade卡在 清理initial-setup-0.3.9.30-1.el7.centos.x86_64

    我安装CENTOS7.2,用yum -y update进行更新 卡在这里了 清理 : initial-setup-0.3.9.30-1.el7.cent 目测是一个系统bug,执行关闭命令解决: sy ...

  8. linux 安装图行界面

    centos6的环境中 代码:[root@ebs122 sysconfig]#yum groupinstall "Desktop" 使用 init 5命令进入图形化界面,如果成功的 ...

  9. 【转】python模块分析之logging日志(四)

    [转]python模块分析之logging日志(四) python的logging模块是用来写日志的,是python的标准模块. 系列文章 python模块分析之random(一) python模块分 ...

  10. SNet解读

    解读论文:Learning Local Image Descriptors with Deep Siamese and Triplet Convolutional Networks by Minimi ...