Solutioon

这道题利用根号分治可以把复杂度降到n根号n级别。

我们发现当物品体积大与根号n时,就是一个完全背包,换句话说就是没有了个数限制。

进一步我们发现,这个背包最多只能放根号n个物品。

所以我们设dp[i][j]表示放了i个物品,体积为j时的方案数。

转移的话一种是往背包里放一个新物品,或者让背包里所有物品体积加1.

当物品体积小于根号n时,因为物品个数比较少,所以我们可以设计状态为dp[i][j]表示前i个物品,占用j的体积为j时的方案数。

然后我们发现它的同类转移点是在模i的剩余系下是相等的,所以我们按照余数分组dp一下。

code

#include<iostream>
#include<cstdio>
#include<cmath>
#define N 100002
using namespace std;
typedef long long ll;
const int mod=;
int f[][N],g[][N],s[N],sum[N],ji[N],ans;
int n,n1;
int main(){
scanf("%d",&n);n1=sqrt(n);
for(int i=;i<=n1;++i)
g[][]=;s[]=;
for(int i=;i<=n1;++i)
for(int j=;j<=n;++j){
if(j>=i)(g[i][j]+=g[i][j-i])%=mod;
if(j>=n1+)(g[i][j]+=g[i-][j-n1-])%=mod;
(s[j]+=g[i][j])%=mod;
}
f[][]=;
for(int i=;i<=n1;++i)
for(int j=;j<i;++j){
int tot=;
for(int k=j;k<=n;k+=i){
ji[++tot]=f[i-][k];
sum[tot]=(sum[tot-]+ji[tot])%mod;
(f[i][k]+=(sum[tot]-sum[max(,tot-i-)]+mod))%=mod;
}
}
for(int i=;i<=n;++i)(ans+=1ll*s[i]*f[n1][n-i]%mod)%=mod;
cout<<ans;
return ;
}

LOJ6089 小Y的背包计数问题(根号优化背包)的更多相关文章

  1. [loj6089]小Y的背包计数问题

    https://www.zybuluo.com/ysner/note/1285358 题面 小\(Y\)有一个大小为\(n\)的背包,并且小\(Y\)有\(n\)种物品. 对于第\(i\)种物品,共有 ...

  2. LOJ6089 小Y的背包计数问题 背包、根号分治

    题目传送门 题意:给出$N$表示背包容量,且会给出$N$种物品,第$i$个物品大小为$i$,数量也为$i$,求装满这个背包的方案数,对$23333333$取模.$N \leq 10^5$ $23333 ...

  3. loj6089 小 Y 的背包计数问题

    link 吐槽: 好吧开学了果然忙得要死……不过为了证明我的blog还没有凉,还是跑来更一波水题 题意: 有n种物品,第i种体积为i,问装满一个大小为n的背包有多少种方案? $n\leq 10^5.$ ...

  4. LOJ6089 小Y的背包计数问题 背包

    正解:背包 解题报告: 先放传送门! 好烦昂感觉真的欠下一堆,,,高级数据结构知识点什么的都不会,基础又麻油打扎实NOIp前的题单什么的都还麻油刷完,,,就很难过,,,哭辣QAQ 不说辣看这题QwQ! ...

  5. 【LOJ6089】小Y的背包计数问题(动态规划)

    [LOJ6089]小Y的背包计数问题(动态规划) 题面 LOJ 题解 神仙题啊. 我们分开考虑不同的物品,按照编号与\(\sqrt n\)的关系分类. 第一类:\(i\le \sqrt n\) 即需要 ...

  6. LOJ #6089. 小 Y 的背包计数问题

    LOJ #6089. 小 Y 的背包计数问题 神仙题啊orz. 首先把数分成\(<=\sqrt n\)的和\(>\sqrt n\)的两部分. \(>\sqrt n\)的部分因为最多选 ...

  7. LOJ#6089 小 Y 的背包计数问题 - DP精题

    题面 题解 (本篇文章深度剖析,若想尽快做出题的看官可以参考知名博主某C202044zxy的这篇题解:https://blog.csdn.net/C202044zxy/article/details/ ...

  8. [BZOJ4182]Shopping (点分治+树上多重背包+单调队列优化)

    [BZOJ4182]Shopping (点分治+树上多重背包+单调队列优化) 题面 马上就是小苗的生日了,为了给小苗准备礼物,小葱兴冲冲地来到了商店街.商店街有n个商店,并且它们之间的道路构成了一颗树 ...

  9. 【luogu P4007 清华集训2017】小Y和恐怖奴隶主

    题目背景 “A fight? Count me in!” 要打架了,算我一个. “Everyone, get in here!” 所有人,都过来! 题目描述 小 Y 是一个喜欢玩游戏的 OIer.一天 ...

随机推荐

  1. 搭建RISC-V错误记录

    错误:riscv64-unknown-elf-gcc: Command not found 解决办法:将riscv64-unknown-elf-gcc文件拷贝到根目录的/bin目录下. 原因是make ...

  2. jenkins 插件介绍

    1.jenkins 利用maven编译,打包,所需插件:Maven Integration: Maven集成插件这个插件提供了Jenkins和Maven的深度集成,无论是好还是坏:项目之间的自动触发取 ...

  3. cmake : undefined reference to dlopen, dlclose, dlsym and dlerror

    链接出了问题 添加头文件 #include <dlfcn.h> 添加库 target_link_libraries(PROJECT_NAME ${CMAKE_DL_LIBS})

  4. js关闭当前页

    /*关闭当前页*/ function closeCurrentPage() { var userAgent = navigator.userAgent; if (userAgent.indexOf(& ...

  5. word的"bug"

    发表博客发现,从word复制文本到chrome浏览器上的博客时, 如果复制完后立即关闭word,那么将无法粘贴到通过chrome浏览器访问的博客上,也无法粘贴到记事本上: 但是复制完立即关闭word后 ...

  6. 腾讯机试题 AcWing 603 打怪兽

    题目链接:https://www.acwing.com/problem/content/605/ 题目大意: 略 分析: 用dp[i][j]表示用j元钱能在前i只怪兽上所能贿赂到的最大武力值. 有一种 ...

  7. C/S和B/S应用程序的区别

    一.C/S和B/S介绍: 1.C/S介绍: Client/Server架构,即客户端/服务器架构.是大家熟知的软件系统体系结构,通过将任务合理分配到Client端和Server端,降低了系统的通讯开销 ...

  8. java 中的包概念

    Java 中的包package, 就是电脑中的文件夹.我们平时在工作中,文件太多时,都会新建文件夹进行分类管理,java 中的包也是类似的道理,当我们的类太多时,也需要进行分类管理,这时我们就会把类文 ...

  9. 微信小程序 canvas 字体自动换行(支持换行符)

    微信小程序 canvas 自动适配 自动换行,保存图片分享到朋友圈  https://github.com/richard1015/News 微信IDE演示代码https://developers.w ...

  10. Go中的Init函数

    init函数会在main函数执行之前进行执行.init用在设置包.初始化变量或者其他要在程序运行前优先完成的引导工作. 举例:在进行数据库注册驱动的时候. 这里有init函数 package post ...