51nod2383
2383 高维部分和
- 1 秒
- 131,072 KB
- 80 分
- 5 级题
输入一个长度为n的数组a[i],下标从0开始(0到n-1)
保证n是2的整数次幂,
对于每个i (0 <= i < n)
求所有满足((i & j) == j)的a[j]之和。
其中&表示按位与,即C++和C中的&,Pascal中的and。
对于100%的数据,1 <= n <= 220, 0 <= a[i] <= 1000
对于70%的数据,1 <= n <= 215,
对于50%的数据,1 <= n <= 210,
虽然这是一个简单题,但是为了降低难度,你可以看看下面的解释。
对于一个一维数组求部分和,可以使用如下代码
for (int i = 1; i <= n; i++) {
a[i] += a[i - 1];
}
对于一个二维数组求部分和,可以使用如下代码
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
a[i][j] += a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1];
}
}
或如下代码
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
a[i][j] += a[i][j - 1]
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
a[i][j] += a[i - 1][j]
}
}
第二份代码看起来更麻烦更慢,来考虑一下三维的情况。
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
for (int k = 1; k <= n; k++) {
a[i][j][k] += a[i][j][k - 1] + a[i][j - 1][k] + a[i - 1][j][k];
a[i][j][k] -= a[i][j - 1][k - 1] + a[i - 1][j - 1][k] + a[i - 1][j][k - 1];
a[i][j][k] += a[i - 1][j - 1][k - 1];
}
}
}
或如下代码
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
for (int k = 1; k <= n; k++) {
a[i][j][k] += a[i][j][k - 1];
}
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
for (int k = 1; k <= n; k++) {
a[i][j][k] += a[i][j - 1][k];
}
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
for (int k = 1; k <= n; k++) {
a[i][j][k] += a[i - 1][j][k];
}
}
}
第二份代码就不一定更慢了(第二份复杂度大约3n^3,第一份复杂度大概8n^3)
随着维度更高,第一份代码容斥时项数越来越多,而第二份只是多一次遍历整个数组,优势越来越大。
同样的思路能不能推广到更高维的情况呢?
收起
输入
第一行一个整数n
接下来n行n个整数,表示a[i]
输出
输出共n行,其中第i(0 <= i < n)行表示i的答案。
输入样例
8
1
2
4
8
16
32
64
128
输出样例
1
3
5
15
17
51
85
255 sol:表示只要找找规律就行了(假)
大概像是前缀和一样呗,对于每一位,加上异或那位的值就可以了,这样是不会重复的,
#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=;
int n,a[N];
int main()
{
freopen("std.in","r",stdin);
freopen("std.out","w",stdout);
int i,j;
R(n);
for(i=;i<n;i++) R(a[i]);
for(j=;j<=n;j<<=)
{
for(i=;i<n;i++) if((i&j)==j)
{
a[i]+=a[i^j];
}
}
for(i=;i<n;i++) Wl(a[i]);
return ;
}
/*
input
8
1
2
4
8
16
32
64
128
output
1
3
5
15
17
51
85
255
*/
51nod2383的更多相关文章
随机推荐
- c#简单的io
读取路径判断文件是否存在,进行删除或者创建 简单的io using System; using System.Collections; using System.Collections.Generic ...
- Linux系统文件和目录管理
Linux系统文件和目录管理 相关命令的解析 1.pwd:显示用户当前的工作目录 2.ls: -a:显示所有文件,包括隐藏文件 -l:显示文件的详细信息 3.设备文件统一存放在/dev 设备文件 块设 ...
- FineUIMvc随笔(7)扩展通知对话框(显示多个不重叠)
声明:FineUIMvc(基础版)是免费软件,本系列文章适用于基础版. 这篇文章我们将改造 FineUIMvc 默认的通知对话框,使得同时显示多个也不会重叠.并提前出一个公共的JS文件,供大家使用. ...
- MySQL 8 新特性之自增主键的持久化
自增主键没有持久化是个比较早的bug,这点从其在官方bug网站的id号也可看出(https://bugs.mysql.com/bug.php?id=199).由Peter Zaitsev(现Perco ...
- 《React Native 精解与实战》书籍连载「React 与 React Native 简介」
此文是我的出版书籍<React Native 精解与实战>连载分享,此书由机械工业出版社出版,书中详解了 React Native 框架底层原理.React Native 组件布局.组件与 ...
- vue文档全局api笔记2
1.Vue.filter( id, [definition] ) 在组件内注册 <template> <div id="app"> <div clas ...
- position fixed 相对于父级定位
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- K 班1-7,alpha,beta 作业成绩汇总
K 班1-7,alpha,beta 作业成绩汇总 千帆竞发 详细得分 短学号 名 1 2 3 4 5 6 7 alpha beta TOTAL 505 基智 4.55 1 -2 0 0 -10 4.3 ...
- Maven安装与环境配置(Windows)
1.下载安装包 在Maven官网下载最新版的安装包:http://maven.apache.org/download.cgi 2.解压安装包 3.配置Maven环境变量 配置M2_HOME环境变量,指 ...
- net core 端口设置
在supervisor的启动配置里面增加环境变量: environment=ASPNETCORE_URLS='http://*:5001'