F(x) 数位dp
0 100
1 10
5 100
Case #2: 2
Case #3: 13
#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);--i)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define ll long long
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
//////////////////////////////////
#define inf 0x3f3f3f3f
#define N 20 int f(int x)
{
if(!x)return ;
int ans=f(x/);
return ans*+(x%);
} ll dp[][+];
ll a[N];
int all; ll dfs(int pos,int sum,bool lead,bool limit)
{
if(!pos)
{
return sum<=all;
}
if(sum>all)return ; if(!limit&&!lead&&dp[pos][all-sum]!=-)return dp[pos][all-sum];
ll ans=;
int up=limit?a[pos]:;
rep(i,,up)
{
ans+=dfs(pos-, sum+i*(<<pos-) , lead&&i==,limit&&i==a[pos]); } if(!limit&&!lead)dp[pos][all-sum]=ans;
return ans;
}
ll solve(int b)
{
int pos=; while(b)
{
a[++pos]=b%;
b/=;
} return dfs(pos, ,true,true);
}
int main()
{
CLR(dp,-); RI(cas);
int kase=;
while(cas--)
{
int a,b;
cin>>a>>b;
all=f(a);
printf("Case #%d: %lld\n",++kase,solve(b));
}
return ;
}
F(x) 数位dp的更多相关文章
- hdu 4389 X mod f(x) 数位DP
思路: 每次枚举数字和也就是取模的f(x),这样方便计算. 其他就是基本的数位Dp了. 代码如下: #include<iostream> #include<stdio.h> # ...
- HDU 4734 F(x) ★(数位DP)
题意 一个整数 (AnAn-1An-2 ... A2A1), 定义 F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1,求[0..B]内有多少 ...
- 【hdu4734】F(x) 数位dp
题目描述 对于一个非负整数 $x=\overline{a_na_{n-1}...a_2a_1}$ ,设 $F(x)=a_n·2^{n-1}+a_{n-1}·2^{n-2}+...+a_2·2^1+ ...
- [hdu4734]F(x)数位dp
题意:求0~f(b)中,有几个小于等于 f(a)的. 解题关键:数位dp #include<bits/stdc++.h> using namespace std; typedef long ...
- hdu4734 F(x)(数位dp)
题目传送门 F(x) Time Limit: 1000/500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- HDU4389:X mod f(x)(数位DP)
Problem Description Here is a function f(x): int f ( int x ) { if ( x == 0 ) return 0; return f ( x ...
- HDU 4734 - F(x) - [数位DP][memset优化]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4734 Time Limit: 1000/500 MS (Java/Others) Memory Lim ...
- HDU-4734 F(x) 数位DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4734 注意到F(x)的值比较小,所以可以先预处理所有F(x)的组合个数.f[i][j]表示 i 位数时 ...
- bzoj 3131 [Sdoi2013]淘金(数位DP+优先队列)
Description 小Z在玩一个叫做<淘金者>的游戏.游戏的世界是一个二维坐标.X轴.Y轴坐标范围均为1..N.初始的时候,所有的整数坐标点上均有一块金子,共N*N块. 一阵风吹 ...
随机推荐
- Elasticsearch索引别名、Filtered索引别名、Template
在使用elasticsearch的时候,经常会遇到需要淘汰掉历史数据的场景. 为了方便数据淘汰,并使得数据管理更加灵活,我们经常会以时间为粒度建立索引,例如: 每个月建立一个索引:monthly-20 ...
- appium+java(四)微信公众号自动化测试实践
前言 随着手机阅读的普遍应用,微信公众号阅读,更为普遍,微信和qq一样,都是基于腾讯自研X5内核,不是google原生webview(其实就是进行了二次定制).实质上也是混合应用的一种,现在很多app ...
- Android应用开发中三种常见的图片压缩方法
Android应用开发中三种常见的图片压缩方法,分别是:质量压缩法.比例压缩法(根据路径获取图片并压缩)和比例压缩法(根据Bitmap图片压缩). 一.质量压缩法 private Bitmap com ...
- springmvc框架原理分析和简单入门程序
一.什么是springmvc? 我们知道三层架构的思想,并且如果你知道ssh的话,就会更加透彻的理解这个思想,struts2在web层,spring在中间控制,hibernate在dao层与数据库打交 ...
- MongoDB、Hbase、Redis等NoSQL优劣势、应用场景
NoSQL的四大种类 NoSQL数据库在整个数据库领域的江湖地位已经不言而喻.在大数据时代,虽然RDBMS很优秀,但是面对快速增长的数据规模和日渐复杂的数据模型,RDBMS渐渐力不从心,无法应对很多数 ...
- 银联支付java版
注:本文来源于:< 银联支付java版 > 银联支付java版 2016年09月18日 15:55:20 阅读数:2431 首先去银联官网注册测试支付账户 下载对应的demo[ ...
- Confluence 6 自定义 Decorator 模板的宏和针对高级用户
宏 页面的某些部分使用的是 Velocity 宏进行创建的,包括导航栏.有关宏的创建,你可以参考页面 Working With Decorator Macros 页面中的内容. 针对高级用户 vel ...
- linux 下安装vscode
下载安装包 https://code.visualstudio.com/docs/?dv=linux64_deb (注意是deb包) sudo dpkg -i code_1.18.1-15108573 ...
- linux用户
hen we are travelling, we find ourselves in new places and new spaces, physically and internally; it ...
- java获取当前时间精确到毫秒
转载:http://af8991.iteye.com/blog/1217672 import java.text.SimpleDateFormat; import java.util.Date; im ...