题目描述

给定一个正整数N(N\le2^{31}-1)N(N≤231−1)

求ans_1=\sum_{i=1}^n\phi(i),ans_2=\sum_{i=1}^n \mu(i)ans1​=∑i=1n​ϕ(i),ans2​=∑i=1n​μ(i)

输入输出格式

输入格式:

一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问

输出格式:

一共T行,每行两个用空格分隔的数ans1,ans2

输入输出样例

输入样例#1: 复制

6
1
2
8
13
30
2333
输出样例#1: 复制

1 1
2 0
22 -2
58 -3
278 -3
1655470 2

裸的杜教筛

$\sum_{i=1}^{n}\varphi(i) = \frac{n\times(n+1)}{2} - \sum_{d=2}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\varphi(i)$

$\sum_{i=1}^{n}\mu(i) = 1 - \sum_{d=2}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\mu(i)$

然后直接暴力递归计算即可

#include<cstdio>
#include<map>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/hash_policy.hpp>
#define LL long long
using namespace std;
using namespace __gnu_pbds;
const int MAXN=;
int N,limit=,tot=,vis[MAXN],mu[MAXN],prime[MAXN];
LL phi[MAXN];
gp_hash_table<int,LL>Aphi,Amu;
void GetMuAndPhi()
{
vis[]=;phi[]=;mu[]=;
for(int i=;i<=limit;i++)
{
if(!vis[i]) prime[++tot]=i,phi[i]=i-,mu[i]=-;
for(int j=;j<=tot&&i*prime[j]<=limit;j++)
{
vis[i*prime[j]]=;
if(i%prime[j]==){mu[i*prime[j]]=; phi[i*prime[j]]=phi[i]*prime[j]; break;}
else {mu[i*prime[j]]=-mu[i]; phi[i*prime[j]]=phi[i]*(prime[j]-); }
}
}
for(int i=;i<=limit;i++) mu[i]+=mu[i-],phi[i]+=phi[i-];
}
LL SolvePhi(LL n)
{
if(n<=limit) return phi[n];
if(Aphi[n]) return Aphi[n];
LL tmp=n*(n+)/;
for(int i=,nxt;i<=n;i=nxt+)
nxt=min(n,n/(n/i)),
tmp-=SolvePhi(n/i)*(LL)(nxt-i+);
return Aphi[n]=tmp;
}
LL SolveMu(LL n)
{
if(n<=limit) return mu[n];
if(Amu[n]) return Amu[n];
LL tmp=;
for(int i=,nxt;i<=n;i=nxt+)
nxt=min(n,n/(n/i)),
tmp-=SolveMu(n/i)*(LL)(nxt-i+);
return Amu[n]=tmp;
}
int main()
{
GetMuAndPhi();
int QWQ;
scanf("%d",&QWQ);
while(QWQ--)
{
scanf("%lld",&N);
printf("%lld %lld\n",SolvePhi(N),SolveMu(N));
}
return ;
}

洛谷P4213 Sum(杜教筛)的更多相关文章

  1. 洛谷P4213(杜教筛)

    #include <bits/stdc++.h> using namespace std; typedef long long LL; const int maxn = 3e6 + 3; ...

  2. 3944: Sum[杜教筛]

    3944: Sum Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3471  Solved: 946[Submit][Status][Discuss] ...

  3. [BZOJ3944]Sum(杜教筛)

    3944: Sum Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 6201  Solved: 1606[Submit][Status][Discuss ...

  4. [bzoj3944] sum [杜教筛模板]

    题面: 传送门 就是让你求$ \varphi\left(i\right) $以及$ \mu\left(i\right) $的前缀和 思路: 就是杜教筛的模板 我们把套路公式拿出来: $ g\left( ...

  5. bzoj 3944 Sum —— 杜教筛

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3944 杜教筛入门题! 看博客:https://www.cnblogs.com/zjp-sha ...

  6. BZOJ 3944: Sum [杜教筛]

    3944: Sum 贴模板 总结见学习笔记(现在还没写23333) #include <iostream> #include <cstdio> #include <cst ...

  7. bzoj3944: Sum 杜教筛板子题

    板子题(卡常) 也可能是用map太慢了 /************************************************************** Problem: 3944 Us ...

  8. [洛谷P4213]【模板】杜教筛(Sum)

    题目大意:给你$n$,求:$$\sum\limits_{i=1}^n\varphi(i),\sum\limits_{i=1}^n\mu(i)$$最多$10$组数据,$n\leqslant2^{31}- ...

  9. 洛谷P3768 简单的数学题 【莫比乌斯反演 + 杜教筛】

    题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\) ...

随机推荐

  1. Day2:html和css

    Day2:html和css 表格是一种常用的标签,表格结构,做到能够合并单元格. 表格的属性: 属性名 说明 border 设置表格的边框 cellspacing 设置单元格与单元格边框之间的空白间距 ...

  2. idea src下源文件和class编译文件不一致

    今天遇到一个神奇BUG,一个和elasticsearch没有任何关系的项目,报错ES某个包找不到,刚开始以为是依赖了父项目的某个包,并且本项目主启动类ComponentScan扫描了相关的类进入Spr ...

  3. 用python自制微信机器人,定时发送天气预报

    0 引言 前段时间找到了一个免费的天气预报API,费了好段时间把这个API解析并组装成自己想用的格式了,就想着如何实现每天发送天气信息给自己.最近无意中发现了wxpy库,用它来做再合适不过了.以下是w ...

  4. 算法:时间复杂度+二分查找法(Java/Go/Python)实现

    导读 曾几何时学好数据结构与算法是我们从事计算机相关工作的基本前提,然而现在很多程序员从事的工作都是在用高级程序设计语言(如Java)开发业务代码,久而久之,对于数据结构和算法就变得有些陌生了,由于长 ...

  5. Spring Cloud微服务如何设计异常处理机制?

    导读 今天和大家聊一下在采用Spring Cloud进行微服务架构设计时,微服务之间调用时异常处理机制应该如何设计的问题.我们知道在进行微服务架构设计时,一个微服务一般来说不可避免地会同时面向内部和外 ...

  6. 怎么让Word形状里的文字上下左右居中

    怎么让Word形状里的文字上下左右居中? 第一:左右居中,用段落居中方法: 第二:上下居中,选定图形,单击鼠标右键并选择“设置形状格式”,在选项卡的“文本框”中,选择中部对齐 效果图:

  7. Storm WordCount

    特别注意,在本地运行的时候应该去掉<scope>provided</scope>,否则会报java.lang.ClassNotFoundException: org.apach ...

  8. C++版 - LeetCode 144. Binary Tree Preorder Traversal (二叉树先根序遍历,非递归)

    144. Binary Tree Preorder Traversal Difficulty: Medium Given a binary tree, return the preorder trav ...

  9. 微信小程序onLaunch异步,首页onLoad先执行?

    本来按照事件顺序,小程序初始化时触发App里的onLaunch,后面再执行页面Page里的onLoad,但是在onLaunch里请求获取是否有权限,等待返回值的时候Page里的onLoad事件就已经执 ...

  10. TOMCAT源码分析(转)

    前言:   本文是我阅读了TOMCAT源码后的一些心得. 主要是讲解TOMCAT的系统框架, 以及启动流程.若有错漏之处,敬请批评指教!建议:   毕竟TOMCAT的框架还是比较复杂的, 单是从文字上 ...