已知直线$l:x+y-\sqrt{3}=0$过椭圆$E:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1,(a>b>0)$的右焦点且与椭圆$E$交于$A,B$两点,$P$为$AB$中点,$OP$的斜率为$\dfrac{1}{2}$.
(1)求椭圆$E$的方程;
(2)设$CD$是椭圆$E$的动弦,且其斜率为$1$,问椭圆$E$上是否存在定点$Q$,使得直线$QC,QD$的斜率分别为$k_1,k_2$满足$k_1+k_2=0?$若存在,求出$Q$的坐标;若不存在,请说明理由.


分析:(1)$c=\sqrt{3},k_{op}*k_l=-\dfrac{b^2}{a^2}$,易得$a^2=6,b^2=3$故$E:\dfrac{x^2}{6}+\dfrac{y^2}{3}=1$

(2)特殊方法.设椭圆切线为$x-y+m=0$,切点为$M(x_0,y_0)$则$6+3-m^2=0$得$m^2=9$,又由椭圆的垂经定理得$k_{OM}*1=-\dfrac{3}{6}$故$\dfrac{y_0}{x_0}=-\dfrac{1}{2}$又$x_0-y_0+m=0$
解得$M(2,-1)\vee M(-2,1)$从而$Q(2,1)\vee Q(-2,-1)$

一般方法见最后附录:
相关内容:2014辽宁卷21题.
已知圆\(x^2+y^2=4\)的切线与\(x\)轴正半轴,\(y\)轴正半轴围成一个三角形.当该三角形的面积最小时切点为\(P\).双曲线\(C_1:\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1\)过点\(P\)且离心率为\(\sqrt 3\)
(1)求\(C_1\)的方程;
(2)椭圆\(C_2\)过点\(P\)且与\(C_1\)有相同的焦点,直线\(l\)过\(C_2\)的右焦点$F$且与\(C_2\)交于\(A\),\(B\)两点.若以线段\(AB\)为直径的圆过点\(P\),求\(l\)的方程.

解答:

(1)\(x^2-\dfrac {y^2}2=1\)
(2)不难得到\[C_2:\dfrac{x^2}6+\dfrac{y^2}3=1.\] \(P(\sqrt 2,\sqrt 2)\),接下来,我们以\(P\)为原点,水平方向为\(x\)轴向重新建立平面直角坐标系,则新坐标系下的椭圆方程为 \[\dfrac{(x+\sqrt 2)^2}6+\dfrac{(y+\sqrt 2)^2}3=1.\] 整理得\[\dfrac 16x^2+\dfrac 13y^2+\dfrac{\sqrt 2}3x+\dfrac{2\sqrt 2}3y=0.\]
设直线\(mx+ny=1\)被椭圆截得的弦对\(P\)的张角为直角,则齐次化联立,有\[\dfrac 16x^2+\dfrac 13y^2+\left(\dfrac{\sqrt 2}3x+\dfrac{2\sqrt 2}3y\right)\cdot (mx+ny)=0.\] 从而有\[\dfrac 16+\dfrac 13+\dfrac{\sqrt 2}3m+\dfrac{2\sqrt 2}3n=0.\] 整理得\[-\dfrac{2\sqrt 2}3m-\dfrac{4\sqrt 2}3n=1.\] 因此该直线恒过点\(R\left(-\dfrac{2\sqrt 2}3,-\dfrac{4\sqrt 2}3\right)\).则原直线恒过$\left(\dfrac{\sqrt 2}3,-\dfrac{\sqrt 2}3\right)$ 
故直线$RF:y=\dfrac{3\sqrt{6}+2}{25}(x-\sqrt{3})$和直线$PF:y=-(2+\sqrt{6})(x-\sqrt{3})$
(注意:很容易遗漏直线$PF$, 事实上此时$A$ 点与$P$ 点重合)为所求.
注:1.椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$与直线$AX+BY+C=0$相切则$a^2A^2+b^2B^2-C^2=0$
2.涉及到椭圆上一个定点引出的两条弦的斜率$k_1,k_2$的和与乘积问题一般平移齐次化会出奇制胜.
3.涉及到椭圆里的弦的中点想到两个东西1.点差法 2.椭圆的垂经定理(可由点差法证明)
4.此题如果用仿射变换也可得到类似做法.
附一般做法:

MT【251】椭圆中的好题的更多相关文章

  1. [重点]delphi 实现 根据给定的标题去《中国青年报》网上电子报数据中查找匹配的内容,并从该内容中取出引题、正题、副题、作者和正文。

    项目要求:根据给定的标题去<中国青年报>网上电子报数据中查找匹配的内容,并从该内容中取出引题.正题.作者和正文. unit Unit1; interface uses Winapi.Win ...

  2. 记ByteCTF中的Node题

    记ByteCTF中的Node题 我总觉得字节是跟Node过不去了,初赛和决赛都整了个Node题目,当然PHP.Java都是必不可少的,只是我觉得Node类型的比较少见,所以感觉挺新鲜的. Nothin ...

  3. java面试中的智力题

    智力题,每个正式的笔试.面试都会出,而且在面大企业的时候必然会问到,笔者曾在很多面试中,都被问到过,不过答得都不是很好,因为时间很短,加上我们有时候过于紧张,所以做出这类问题,还是有一定的难度,从这篇 ...

  4. HDU 6362(求椭圆中矩形周长的期望 数学)

    题意是给定一个椭圆标准方程的a,b(椭圆的长半轴长和短半轴长),在[0,b]内取一个数,则过点(0,b)且平行于x轴的直线与椭圆交于两点,再将此两点关于x轴做对称点,顺次连接此四点构成矩形,求出这些矩 ...

  5. js 中的算法题,那些经常看到的

    js中遇到的算法题不是很多,可以说基本遇不到.但面试的时候,尤其是一些大公司,总是会出这样那样的算法题,考察一个程序员的逻辑思维能力.如下: 1.回文. 回文是指把相同的词汇或句子,在下文中调换位置或 ...

  6. 线段树好题(2004集训队林涛PPT中的3题)

    1.snake:主要是要意识到全局的可能连法只有一种= =(略坑,题目的最小长度是唬人的……),所以关键就是能否构造出符合题意的图,可以考虑搜索解决,搜出一个就OK了,但是会发现那些满足条件中线段在非 ...

  7. chall.tasteless.eu 中的注入题

    第一题好像就很难,看了payload,算是涨见识了,感觉有点为了猜而猜. 题目给我们的时候是这样的:http://chall.tasteless.eu/level1/index.php?dir=ASC ...

  8. MT【249】离心率两题

    椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1,(a>b>0)$的一个焦点为$F$,过$F$的直线交椭圆于$A,B$两点,$M$是点$A$关于原点的对称点.若 ...

  9. 历年NOIP中的搜索题

    什么题目都不会做于是开始做搜索题. 然而我搜索题也不会做了. 铁定没戏的蒟蒻. 1.NOIP2004 虫食算 “对于给定的N进制加法算式,求出N个不同的字母分别代表的数字,使得该加法算式成立.输入数据 ...

随机推荐

  1. Stochastic Optimization of PCA with Capped MSG

    目录 Problem Matrix Stochastic Gradient 算法(MSG) 步骤二(单次迭代) 单步SVD \(project()\)算法 \(rounding()\) 从这里回溯到此 ...

  2. Jury Meeting CodeForces - 854D (前缀和维护)

    Country of Metropolia is holding Olympiad of Metrpolises soon. It mean that all jury members of the ...

  3. vue双向数据绑定的简单实现

    vue双向数据绑定的简单实现 参考教程:链接 <!DOCTYPE html> <html lang="en"> <head> <meta ...

  4. C# Note11:如何优雅地退出WPF应用程序

    前言 I should know how I am supposed to exit my application when the user clicks on the Exit menu item ...

  5. python爬虫之git的使用

    一.简单认识: 1.初始化文件夹为版本控制文件夹,首先建立一个文件夹,进入这个文件夹以后输入git init初始化这个文件夹. 2.Git几种位置概念 1.本地代码:本地更改完代码以后,虽然是存放在g ...

  6. js删除数组元素

    一.清空数组 var ary = [1,2,3,4]; ary.splice(0,ary.length);//清空数组 console.log(ary); // 输出 [],空数组,即被清空了 二.删 ...

  7. Django--cookie 和 session

    一 . 会话跟踪 简单来说就是如果谢霆锋登录了淘宝,然后他点击淘宝内的任何连接就不需要在登录了,这是由于这个会话中数据共享, 也就是会话跟踪, 我们都知道http协议是短连接 无状态的,也就是说你登录 ...

  8. SpringMVC配置三大组件

    1.组件扫描器 使用组件扫描器省去在spring容器配置每个Controller类的繁琐. 使用<context:component-scan>自动扫描标记@Controller的控制器类 ...

  9. Spring JDBC模版以及三种数据库连接池的使用

    jar包版本有点乱,直接忽略版本号,将就一下. 这里引了aop包是因为在spring3版本之后用模版对数据库库操作时会出现问题,但是不会报错,也没有提示. 所以这里直接引入,以及之后会用到的DBCP与 ...

  10. QTP 自动货测试桌面程序-笔记 (单据-下拉框选择、对话框 、菜单)

    1 录制下拉框使用键盘上下键 回车键选择记录行 Window("驷惠WIN系列[汽车4S连锁管理软件] 6.").Window("采购计划").WinObjec ...