[matlab] 6.粒子群优化算法
粒子群优化(PSO, particle swarm optimization)算法是计算智能领域,除了蚁群算法,鱼群算法之外的一种群体智能的优化算法,该算法最早由Kennedy和Eberhart在1995年提出的,该算法源自对鸟类捕食问题的研究。
实例分析1:
根据PSO算法思路求y最大值 ,其中x取值区间为[-5,5]
matlab代码如下:
%% I. 清空环境
clc
clear all %% II. 绘制目标函数曲线图
x = -5:0.01:5;
y = 2.1*(1-x+5*x.^3).*exp(-x.^2/2)-x.^2;
figure
plot(x, y)
hold on %% III. 参数初始化 这里默认惯性因子为1
c1 = 1.49445; %加速常数 取Eberhart的参考值
c2 = 1.49445; %加速常数 取Eberhart的参考值 maxgen = 30; % 进化次数
sizepop = 100; %种群规模 Vmax = 0.5; %速度步长上限
Vmin = -0.5; %速度步长下限
popmax = 5; % x的上限
popmin = -5; % x的下限 %% IV. 产生初始粒子和速度
for i = 1:sizepop
% 随机产生一个种群
pop(i,:) = -10*rands(1)+5; %产生[-5,5]的初始种群
V(i,:) = 0.5 * rands(1); %初始化[-0.5,0.5]速度
% 利用fun.m子函数,计算适应度并存储到fitness(i)中
fitness(i) = fun(pop(i,:));
end %% V. 个体极值和群体极值
[bestfitness, bestindex] = max(fitness);
zbest = pop(bestindex,:); %全局最佳
gbest = pop; %个体最佳
fitnessgbest = fitness; %个体最佳适应度值
fitnesszbest = bestfitness; %全局最佳适应度值 %% VI. 迭代寻优
for i = 1:maxgen for j = 1:sizepop
% 速度更新
V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,V(j,:)>Vmax) = Vmax;
V(j,V(j,:)<Vmin) = Vmin; % 种群更新
pop(j,:) = pop(j,:) + V(j,:);
pop(j,pop(j,:)>popmax) = popmax;
pop(j,pop(j,:)<popmin) = popmin; % 适应度值更新
fitness(j) = fun(pop(j,:));
end for j = 1:sizepop
% 个体最优更新
if fitness(j) > fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end % 群体最优更新
if fitness(j) > fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end
end
yy(i) = fitnesszbest;
end %% VII. 输出结果并绘图
[fitnesszbest zbest];
plot(zbest, fitnesszbest,'r.','MarkerSize',10)
plot(zbest, fitnesszbest,'ro','MarkerSize',16)
x_text=['x=',num2str(zbest)]; % x横坐标转换为字符串
y_text=['y=',num2str(fitnesszbest)]; % y横坐标转换为字符串
max_text=char('全局最优',x_text,y_text); % 生成标志最大值点的字符串
text(zbest+0.3, fitnesszbest-1.4,max_text) %图上绘出全局最优的数据值
figure
plot(yy)
title('最优个体适应度','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);
main.m
function y = fun(x)
% 函数用于计算粒子适应度值
%x input 输入粒子
%y output 粒子适应度值
y = 2.1*(1-x+5*x.^3).*exp(-x.^2/2)-x.^2;
fun.m
实例分析2:
根据PSO算法思路求z最大值 ,其中x,y取值区间为[-5,5]
%% I. 清空环境
clc
clear %% II. 绘制目标函数曲线
figure
[x,y] = meshgrid(-5:0.01:5,-5:0.01:5);
z = x.^2 + y.^2 - 10*cos(2*pi*x) - 10*cos(2*pi*y) + 20;
surf(x,y,z)
shading flat; %去除网格线
hold on %% III. 参数初始化
c1 = 1.49445;
c2 = 1.49445; maxgen = 300; % 进化次数
sizepop = 100; %种群规模 Vmax = 1;
Vmin = -1;
popmax = 5;
popmin = -5; %% IV. 产生初始粒子和速度
for i = 1:sizepop
% 随机产生一个种群
pop(i,:) = 5*rands(1,2); %初始种群
V(i,:) = rands(1,2); %初始化速度
% 计算适应度
fitness(i) = fun(pop(i,:)); %染色体的适应度
end %% V. 个体极值和群体极值
[bestfitness bestindex] = max(fitness);
zbest = pop(bestindex,:); %全局最佳
gbest = pop; %个体最佳
fitnessgbest = fitness; %个体最佳适应度值
fitnesszbest = bestfitness; %全局最佳适应度值 %% VI. 迭代寻优
for i = 1:maxgen for j = 1:sizepop
w=1; %这里惯性因子w设为1,过小会导致局部最优 过大导致搜索粗糙 一般建议取0.6-0.75
% 速度更新
V(j,:) = w*V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,find(V(j,:)>Vmax)) = Vmax;
V(j,find(V(j,:)<Vmin)) = Vmin; % 种群更新
pop(j,:) = pop(j,:) + V(j,:);
pop(j,find(pop(j,:)>popmax)) = popmax;
pop(j,find(pop(j,:)<popmin)) = popmin; % 适应度值更新
fitness(j) = fun(pop(j,:));
end for j = 1:sizepop
% 个体最优更新
if fitness(j) > fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end % 群体最优更新
if fitness(j) > fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end
end
yy(i) = fitnesszbest;
end
%% VII.输出结果
[fitnesszbest, zbest]
plot3(zbest(1), zbest(2), fitnesszbest,'r.','MarkerSize',20)
plot3(zbest(1), zbest(2), fitnesszbest,'ro','MarkerSize',16)
x_text=['x=',num2str(zbest(1))]; % x横坐标转换为字符串
y_text=['y=',num2str(zbest(2))]; % y横坐标转换为字符串
z_text=['z=',num2str(fitnesszbest)]; %全局最优值z转换为字符串
max_text=char('全局最优',x_text,y_text,z_text); % 生成标志最大值点的字符串
text(zbest(1)+0.3,zbest(2)+0.3, fitnesszbest-1.4,max_text) %图上绘出全局最优的数据值
figure
plot(yy)
title('最优个体适应度','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);
main.m
function y = fun(x)
%函数用于计算粒子适应度值
%y output 粒子适应度值
y = x(1).^2 + x(2).^2 - 10*cos(2*pi*x(1)) - 10*cos(2*pi*x(2)) + 20;
fun.m
其中要注意的是惯性因子ω越大,粒子飞行的速度和位置更新的幅度就越大,偏离原先寻优轨道的程度也就越大,从而发现新的解域;相反,如果惯性因子ω越小,有利于局部寻优,提高搜索精度,惯性因子ω的大小决定了粒子对当前速度继承的多少.
所以实际操作中开始将惯性因子设置得较大,然后再迭代的过程中逐步减小,这样可以使得粒子群在开始优化时得到较大的解空间,后期逐渐收缩到较好的区域进行更精细化的搜索,以加快收敛与精度.
为了更好的平衡全局搜索与局部搜索,故提出线性递减惯性权重LDIW(linear decreasing inertia weight)
ω(k)=ω(start)-(ω(start)-w(end))(T(max)-k)/T(max)
其中ω(start)为初始惯性权重,一般取0.9,w(end)为迭代至最大次数时的惯性权重,一般取0.4,k为当前迭代次数,T(max)为最大迭代次数.
ws = 0.9;
we = 0.4;
maxgen = 300;
hold on; for k = 1:maxgen
w(k) = ws - (ws-we)*(k/maxgen);
end
plot(w,'linewidth',3); for k = 1:maxgen
w(k) = ws - (ws-we)*(k/maxgen)^2;
end
plot(w,'r-.','linewidth',3); for k = 1:maxgen
w(k) = ws - (ws-we)*(2*k/maxgen-(k/maxgen)^2);
end
plot(w,'k--.','linewidth',3); for k = 1:maxgen
w(k) = we * (ws/we)^(1/(1+10*k/maxgen));
end
plot(w,'--','linewidth',3); legend('线性惯性权重递减','常用权重2','常用权重3','常用权重4')
xlabel('迭代次数')
ylabel('速度更新权重W')
速度更新权重ω的选择
[matlab] 6.粒子群优化算法的更多相关文章
- MATLAB粒子群优化算法(PSO)
MATLAB粒子群优化算法(PSO) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.介绍 粒子群优化算法(Particle Swarm Optim ...
- 粒子群优化算法PSO及matlab实现
算法学习自:MATLAB与机器学习教学视频 1.粒子群优化算法概述 粒子群优化(PSO, particle swarm optimization)算法是计算智能领域,除了蚁群算法,鱼群算法之外的一种群 ...
- 粒子群优化算法对BP神经网络优化 Matlab实现
1.粒子群优化算法 粒子群算法(particle swarm optimization,PSO)由Kennedy和Eberhart在1995年提出,该算法模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作 ...
- [Algorithm] 群体智能优化算法之粒子群优化算法
同进化算法(见博客<[Evolutionary Algorithm] 进化算法简介>,进化算法是受生物进化机制启发而产生的一系列算法)和人工神经网络算法(Neural Networks,简 ...
- 计算智能(CI)之粒子群优化算法(PSO)(一)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 计算智能(Computational Intelligence , ...
- 数值计算:粒子群优化算法(PSO)
PSO 最近需要用上一点最优化相关的理论,特地去查了些PSO算法相关资料,在此记录下学习笔记,附上程序代码.基础知识参考知乎大佬文章,写得很棒! 传送门 背景 起源:1995年,受到鸟群觅食行为的规律 ...
- ARIMA模型--粒子群优化算法(PSO)和遗传算法(GA)
ARIMA模型(完整的Word文件可以去我的博客里面下载) ARIMA模型(英语:AutoregressiveIntegratedMovingAverage model),差分整合移动平均自回归模型, ...
- 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(二)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 作者:Geppetto 前面我们介绍了特征选择(Feature S ...
- 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(一)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 作者:Geppetto 在机器学习中,离散化(Discretiza ...
随机推荐
- python进程基础
目录 进程以及状态 1. 进程 2. 进程的状态 进程的创建-multiprocessing 1. 创建进程 2. 进程pid 3. Process语法结构如下 4. 给子进程指定的函数传递参数 5. ...
- JavaWeb学习日记----XML的解析
XML的解析简介: 在学习JavaScript时,我们用的DOM来解析HEML文档,根据HTML的层级结构在内存中分配一个树形结构,把HTML的标签啊,属性啊和文本之类的都封装成对象. 比如:docu ...
- 设计模式—装饰模式的C++实现
这是Bwar在2009年写的设计模式C++实现,代码均可编译可运行,一直存在自己的电脑里,曾经在团队技术分享中分享过,现搬到线上来. 1. 装饰模式简述 1.1 目的 动态地给一个对象添加一些额外的职 ...
- javascript中加号(+)操作符的作用
// 16进制转换:+”0xFF”; // -> 255 // 获取当前的时间戳,相当于`new Date().getTime()`:+new Date(); // 比 ...
- 如何用ABP框架快速完成项目(13) - 用ABP遇到难题项目受阻时如何避免项目延迟
只有一个人在开发ABP, 遇到难题时可以: 最根本的, 简化问题, 不要盖楼式结构 前端优先用VSCode看文档, 后端看官网文档. 看ABP源码/issues 到QQ群和微信群里寻求外援. 我建 ...
- bat 批处理获取时间语法格式
bat 批处理获取时间语法格式 取年份:echo %date:~0,4% 取月份:echo %date:~5,2% 取日期:echo %date:~8,2% 取星期:echo %date:~10 ...
- spark大批量读取Hbase时出现java.lang.OutOfMemoryError: unable to create new native thread
这个问题我去网上搜索了一下,发现了很多的解决方案都是增加的nproc数量,即用户最大线程数的数量,但我修改了并没有解决问题,最终是通过修改hadoop集群的最大线程数解决问题的. 并且网络上的回答多数 ...
- LeetCode题解之Sum Root to Leaf Numbers
1.题目描述 2.问题分析 记录所有路径上的值,然后转换为int求和. 3.代码 vector<string> s; int sumNumbers(TreeNode* root) { tr ...
- Linux中对swap分区的配置
swap分区的安装与正常分区的安装大致相同,我这里就只说一下不同 大家可先看我上一篇的安装:https://www.cnblogs.com/feiquan/p/9219447.html 1.查看swa ...
- Tomcat8-windows不能在本地计算机启动tomcat,有更多的信息,查阅系统事件日志。
tomcat启动不了,也卸载不了. 本人的一个解决方法: 本来jdk和jre是装在g盘的同一个文件夹里的,后来删了他们.再安装的时候jdk安装回原来的地方,jre安装到c盘. 现在需要卸载到他们,重新 ...