一、C/C++多线程操作说明

C/C++多线程基本操作如下: 
1. 线程的建立结束 
2. 线程的互斥和同步 
3. 使用信号量控制线程 
4. 线程的基本属性配置

在C/C++代码编写时,使用多线程机制,首先需要做的事情就是声明引用,具体如下:

#include "pthread.h"

二、线程基本操作方法

基本线程操作:

1. pthread_create():创建线程开始运行相关线程函数,运行结束则线程退出

2. pthread_eixt():因为exit()是用来结束进程的,所以则需要使用特定结束线程的函数

3. pthread_join():挂起当前线程,用于阻塞式地等待线程结束,如果线程已结束则立即返回,0=成功

4. pthread_cancel():发送终止信号给thread线程,成功返回0,但是成功并不意味着thread会终止

5. pthread_testcancel():在不包含取消点,但是又需要取消点的地方创建一个取消点,以便在一个没有包含取消点的执行代码线程中响应取消请求.

6. pthread_setcancelstate():设置本线程对cancle线程的反应

7. pthread_setcanceltype():设置取消状态 继续运行至下一个取消点再退出或者是立即执行取消动作

8. pthread_setcancel():设置取消状态

三、线程互斥与同步机制

基本的互斥与同步的操作方法:

1. pthread_mutex_init():互斥锁的初始化

2. pthread_mutex_lock():锁定互斥锁,如果尝试锁定已经被上锁的互斥锁则阻塞至可用为止

3. pthread_mutex_trylock():非阻塞的锁定互斥锁

4. pthread_mutex_unlock():释放互斥锁

5. pthread_mutex_destory():互斥锁销毁函数

四、多线程实践

1. 基本的线程及建立运行

下面的代码是C/C++开发的基本的线程的运行,使用的就是最基本的pthread.h:

/* thread.c */
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h> #define THREAD_NUMBER 3 /*线程数*/
#define REPEAT_NUMBER 5 /*每个线程中的小任务数*/
#define DELAY_TIME_LEVELS 10.0 /*小任务之间的最大时间间隔*/
//
void *thrd_func(void *arg) {
/* 线程函数例程 */
int thrd_num = (int)arg;
int delay_time = ;
int count = ;
printf("Thread %d is starting\n", thrd_num);
for (count = ; count < REPEAT_NUMBER; count++) {
delay_time = (int)(rand() * DELAY_TIME_LEVELS/(RAND_MAX)) + ;
sleep(delay_time);
printf("\tThread %d: job %d delay = %d\n", thrd_num, count, delay_time);
} printf("Thread %d finished\n", thrd_num);
pthread_exit(NULL);
} int main(void) {
pthread_t thread[THREAD_NUMBER];
int no = , res;
void * thrd_ret;
srand(time(NULL));
for (no = ; no < THREAD_NUMBER; no++) {
/* 创建多线程 */
res = pthread_create(&thread[no], NULL, thrd_func, (void*)no);
if (res != ) {
printf("Create thread %d failed\n", no);
exit(res);
}
} printf("Create treads success\n Waiting for threads to finish...\n");
for (no = ; no < THREAD_NUMBER; no++) {
/* 等待线程结束 */
res = pthread_join(thread[no], &thrd_ret);
if (!res) {
printf("Thread %d joined\n", no);
} else {
printf("Thread %d join failed\n", no);
}
}
return ;
}

例程中循环3次建立3条线程,并且使用pthread_join函数依次等待线程结束; 
线程中使用rand()获取随机值随机休眠5次,随意会出现后执行的线程先执行完成; 
运行结果:

$ gcc thread.c -lpthread
$ ./a.out
Create treads success
Waiting for threads to finish...
Thread is starting
Thread is starting
Thread is starting
Thread : job delay =
Thread : job delay =
Thread : job delay =
Thread : job delay =
Thread : job delay =
Thread : job delay =
Thread : job delay =
Thread : job delay =
Thread : job delay =
Thread : job delay =
Thread : job delay =
Thread : job delay =
Thread finished
Thread : job delay =
Thread : job delay =
Thread finished
Thread joined
Thread joined
Thread : job delay =
Thread finished
Thread joined

可以看到,线程1先于线程0执行,但是pthread_join的调用时间顺序,先等待线程0执行; 
由于线程1已经早结束,所以线程0被pthread_join等到的时候,线程1已结束,就在等待到线程1时,直接返回;

2. 线程执行的互斥和同步pthread_mutex_lock

下面我们在上面的程序中增加互斥锁:

/*thread_mutex.c*/
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h> #define THREAD_NUMBER 3 /* 线程数 */
#define REPEAT_NUMBER 3 /* 每个线程的小任务数 */
#define DELAY_TIME_LEVELS 10.0 /*小任务之间的最大时间间隔*/
pthread_mutex_t mutex; void *thrd_func(void *arg) {
int thrd_num = (int)arg;
int delay_time = , count = ;
int res;
/* 互斥锁上锁 */
res = pthread_mutex_lock(&mutex);
if (res) {
printf("Thread %d lock failed\n", thrd_num);
pthread_exit(NULL);
}
printf("Thread %d is starting\n", thrd_num);
for (count = ; count < REPEAT_NUMBER; count++) {
delay_time = (int)(rand() * DELAY_TIME_LEVELS/(RAND_MAX)) + ;
sleep(delay_time);
printf("\tThread %d: job %d delay = %d\n",
thrd_num, count, delay_time);
}
printf("Thread %d finished\n", thrd_num);
/****互斥锁解锁***/
pthread_mutex_unlock(&mutex);
pthread_exit(NULL);
} int main(void) {
pthread_t thread[THREAD_NUMBER];
int no = , res;
void * thrd_ret; srand(time(NULL));
/* 互斥锁初始化 */
pthread_mutex_init(&mutex, NULL);
for (no = ; no < THREAD_NUMBER; no++) {
res = pthread_create(&thread[no], NULL, thrd_func, (void*)no);
if (res != ) {
printf("Create thread %d failed\n", no);
exit(res);
}
}
printf("Create treads success\n Waiting for threads to finish...\n");
for (no = ; no < THREAD_NUMBER; no++) {
res = pthread_join(thread[no], &thrd_ret);
if (!res) {
printf("Thread %d joined\n", no);
} else {
printf("Thread %d join failed\n", no);
}
}
pthread_mutex_destroy(&mutex);
return ;
}

在上面的例程中直接添加同步锁pthread_mutex_t; 
在线程中加入,程序在执行线程程序时,调用pthread_mutex_lock上锁,发现上锁时候后进入等待,等待锁再次释放后重新上锁; 
所以线程程序加载到队列中等待,等待成功上锁后继续执行程序代码; 
运行结果如下:

Create treads success
Waiting for threads to finish...
Thread is starting
Thread : job delay =
Thread : job delay =
Thread : job delay =
Thread finished
Thread is starting
Thread joined
Thread : job delay =
Thread : job delay =
Thread : job delay =
Thread finished
Thread is starting
Thread : job delay =
Thread : job delay =
Thread : job delay =
Thread finished
Thread joined
Thread joined 

C/C++ 多线程机制的更多相关文章

  1. Java的多线程机制系列:不得不提的volatile及指令重排序(happen-before)

    一.不得不提的volatile volatile是个很老的关键字,几乎伴随着JDK的诞生而诞生,我们都知道这个关键字,但又不太清楚什么时候会使用它:我们在JDK及开源框架中随处可见这个关键字,但并发专 ...

  2. Java的多线程机制系列:(一)总述及基础概念

    前言 这一系列多线程的文章,一方面是个人对Java现有的多线程机制的学习和记录,另一方面是希望能给不熟悉Java多线程机制.或有一定基础但理解还不够深的读者一个比较全面的介绍,旨在使读者对Java的多 ...

  3. Python GIL 多线程机制 (C source code)

    最近阅读<Python源码剖析>对进程线程的封装解释: GIL,Global Interpreter Lock,对于python的多线程机制非常重要,其如何实现的?代码中实现如下: 指向一 ...

  4. Java的多线程机制系列:(四)不得不提的volatile及指令重排序(happen-before)

    一.不得不提的volatile volatile是个很老的关键字,几乎伴随着JDK的诞生而诞生,我们都知道这个关键字,但又不太清楚什么时候会使用它:我们在JDK及开源框架中随处可见这个关键字,但并发专 ...

  5. Java的多线程机制系列:(三)synchronized的同步原理

    synchronized关键字是JDK5之实现锁(包括互斥性和可见性)的唯一途径(volatile关键字能保证可见性,但不能保证互斥性,详细参见后文关于vloatile的详述章节),其在字节码上编译为 ...

  6. python多线程机制

    Python中的线程从一开始就是操作系统的原生线程.而Python虚拟机也同样使用一个全局解释器锁(Global Interpreter Lock,GIL)来互斥线程多Python虚拟机的使用. GI ...

  7. 《Exploring in UE4》多线程机制详解[原理分析]

    转自:https://zhuanlan.zhihu.com/c_164452593 目录一.概述二."标准"多线程三.AsyncTask系统3.1 FQueuedThreadPoo ...

  8. 沉淀再出发:再谈java的多线程机制

    沉淀再出发:再谈java的多线程机制 一.前言 自从我们学习了操作系统之后,对于其中的线程和进程就有了非常深刻的理解,但是,我们可能在C,C++语言之中尝试过这些机制,并且做过相应的实验,但是对于ja ...

  9. Java的多线程机制系列:(二)缓存一致性和CAS

    一.总线锁定和缓存一致性 这是两个操作系统层面的概念.随着多核时代的到来,并发操作已经成了很正常的现象,操作系统必须要有一些机制和原语,以保证某些基本操作的原子性.首先处理器需要保证读一个字节或写一个 ...

随机推荐

  1. java实验环境搭建,eclise下载与使用

    一.1.官方下载地址:http://www.oracle.com/technetwork/java/javase/downloads/index.html 下载后安装,默认安装即可. 2.在 wind ...

  2. 【转】.NET程序员提高效率的70多个开发工具

    原文:.NET程序员提高效率的70多个开发工具 工欲善其事,必先利其器,没有好的工具,怎么能高效的开发出高质量的代码呢?本文为各ASP.NET 开发者介绍一些高效实用的工具,涉及SQL 管理,VS插件 ...

  3. Node.js前端程序通过Nginx部署后刷新出现404问题的解决办法

    方案一 (这种方式容易被第三方劫持) location / { root /data/nginx/html; index index.html index.htm; error_page 404 /i ...

  4. DynamoDB

    https://boto3.amazonaws.com/v1/documentation/api/latest/guide/dynamodb.html Creating a  New  Table I ...

  5. oracle12C安装步骤

    首先去官网下载两个架包链接如下:官网链接 第一步:将两个架包解压到同一个database目录下.如截图所示: 第二步:打开setup应用程序 打开后就到了下面这个页面 第三步:配置安全更新 环境变量配 ...

  6. JavaScript初见

    警告alert() 确认confirm() 提问prompt() 空格 JavaScript-打开新窗口(window.open) open() 方法可以查找一个已经存在或者新建的浏览器窗口. 语法: ...

  7. ----Arrow functions----

    Arrow functions Arrow functions表达式相比函数表达式有更短的语法,没有自己的this.argument.super或者new.target. 1.语法规则: 基础语法: ...

  8. MySQL 1053错误 服务无法正常启动的解决方法

    MySQL 1053错误 服务无法正常启动的解决方法 1.右键我的电脑,管理,进入服务 2.右键单击Mysql8 属性,选择登陆  选择此账号  登陆管理员账号

  9. HTTPie命令介绍

    HTTPie 是一个 HTTP 的命令行客户端.其目标是让 CLI 和 web 服务之间的交互尽可能的人性化.HTTPie 可用于与 HTTP 服务器做测试.调试和常规交互. 1 定制 HTTP 方法 ...

  10. 关于canvas补充说明

    上篇文章提到的canvas画布,用到f2组件,组件地址https://gw.alipayobjects.com/os/antv/assets/f2/3.0.0/f2.js或利用npm下载:npm in ...