matlab练习程序(马尔可夫聚类MCL)
本文主要参考:
https://wenku.baidu.com/view/b7907665caaedd3383c4d31b.html
https://blog.csdn.net/u010376788/article/details/50187321
虽然参考上面两篇文章,不过这里和他给出的算法步骤不完全一致。
因为上面文章是针对Graphs的,矩阵中有边为0的数据,而我的数据是Vector的,边是根据距离计算出来的,应该还是有点区别的,而且我还用了kmeans。
首先给出他的算法步骤:
1.输入一个无向图,Expansion的幂e和Inflation的参数r。
2.创建邻接矩阵。
3.对每个结点添加自循环(可选的)。
4.标准化矩阵(每个元素除以所在列的所有元素之和)。
5.计算矩阵的第e次幂。
6.用参数r对求得的矩阵进行Inflation处理。
7.重复第5步和第6步,直到状态稳定不变(收敛)。
8.把最终结果矩阵转换成聚簇。
然后是这里的算法步骤:
1.输入数据,创建邻接矩阵。
2.标准化矩阵(每个元素除以所在列的所有元素之和)。
3.对标准化后的矩阵进行马尔可夫状态转移。
4.重复第2步和第3步,直到状态稳定不变(收敛)。
5.使用kmeans把最终结果矩阵转换成聚簇。(不明白kmeans的可以看看这篇文章)
代码如下:
clear all;
close all;
clc; K=;
theta=:0.01:*pi;
p1=[*cos(theta) + rand(,length(theta))/;*sin(theta)+ rand(,length(theta))/];
p2=[*cos(theta) + rand(,length(theta))/;*sin(theta)+ rand(,length(theta))/];
p3=[cos(theta) + rand(,length(theta))/;sin(theta)+ rand(,length(theta))/];
p=[p1 p2 p3]'; randIndex = randperm(length(p))'; %打乱数据顺序
p=p(randIndex,:);
plot(p(:,),p(:,),'.') for i = :length(p)
for j =:length(p)
W(i,j) = sqrt(sum((p(i,:)-p(j,:)).^)); %根据距离初始化无向图的边
end
end preW=W;
while
x=repmat(sum(W),length(p),);
W=W./x;
W=W*W; %马尔科夫状态转移 if sum(sum(preW-W))<1e-15
break;
end preW=W;
end [idx,ctrs] = kmeans(W(:,),K); %用kmeans将收敛矩阵转换为聚簇
figure;
plot(p(idx==,),p(idx==,),'r.')
hold on;
plot(p(idx==,),p(idx==,),'g.')
plot(p(idx==,),p(idx==,),'b.')
原始数据:
聚类后:
matlab练习程序(马尔可夫聚类MCL)的更多相关文章
- 马尔科夫随机场(MRF)及其在图像降噪中的matlab实现
(Markov Random Field)马尔科夫随机场,本质上是一种概率无向图模型 下面从概率图模型说起,主要参考PR&ML 第八章 Graphical Model (图模型) 定义:A g ...
- 从随机过程到马尔科夫链蒙特卡洛方法(MCMC)
从随机过程到马尔科夫链蒙特卡洛方法 1. Introduction 第一次接触到 Markov Chain Monte Carlo (MCMC) 是在 theano 的 deep learning t ...
- [综]隐马尔可夫模型Hidden Markov Model (HMM)
http://www.zhihu.com/question/20962240 Yang Eninala杜克大学 生物化学博士 线性代数 收录于 编辑推荐 •2216 人赞同 ×××××11月22日已更 ...
- 机器学习&数据挖掘笔记_19(PGM练习三:马尔科夫网络在OCR上的简单应用)
前言: 接着coursera课程:Probabilistic Graphical Models上的实验3,本次实验是利用马尔科夫网络(CRF模型)来完成单词的OCR识别,每个单词由多个字母组合,每个字 ...
- 隐马尔科夫模型(Hidden Markov Models)
链接汇总 http://www.csie.ntnu.edu.tw/~u91029/HiddenMarkovModel.html 演算法笔记 http://read.pudn.com/downloads ...
- Python实现HMM(隐马尔可夫模型)
1. 前言 隐马尔科夫HMM模型是一类重要的机器学习方法,其主要用于序列数据的分析,广泛应用于语音识别.文本翻译.序列预测.中文分词等多个领域.虽然近年来,由于RNN等深度学习方法的发展,HMM模型逐 ...
- 马尔可夫随机场(Markov random fields) 概率无向图模型 马尔科夫网(Markov network)
上面两篇博客,解释了概率有向图(贝叶斯网),和用其解释条件独立.本篇将研究马尔可夫随机场(Markov random fields),也叫无向图模型,或称为马尔科夫网(Markov network) ...
- 隐马尔可夫(HMM)/感知机/条件随机场(CRF)----词性标注
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 7. 词性标注 7.1 词性标注概述 什么是词性 在语言学上,词性(Par-Of- ...
- HMM基本原理及其实现(隐马尔科夫模型)
HMM(隐马尔科夫模型)基本原理及其实现 HMM基本原理 Markov链:如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程.马尔可夫链是时间和状态 ...
随机推荐
- Hadoop学习笔记(四):Yarn和MapReduce
1. 先关闭掉所有的防火墙(master和所有slave) 2. 配置yarn-site.xml文件(配置所有机器,此时没有启动hadoop服务) 3. 启Yarn,输入要命令start-yarn.s ...
- NuGet包和功能
Microsoft.AspNetCore.Razor.Tools:提供TagHelper的智能感知提示和代码加粗高亮显示. Microsoft.AspNetCore.Session:管理会话状态的中间 ...
- kafka配置项host.name advertised.host.name
遇到的问题: 在本机或者其他机器telnet IP 9092,通,使用域名也通,telnet 127.0.0.1 9092不通 host.name:按配置文件说明,是Kafka绑定的interface ...
- vux环境配置
第一步 在vue项目中的package.json文件的dependencies中添加下面三行,即安装vux及其相关依赖 "vux":"^2.7.3", &quo ...
- [PHP] php + phpstudy + phpstrom + xdebug + postman开启调试
主体 php + phpstudy + phpstrom + xdebug + postman + vue + chrome 使用的是前后端分离的开发方式,vue 在 webpack 通过代理进行请求 ...
- C# winform自动更新 (附 demo下载)
随着需求的变化,如果Server每次更新出新的内容,Client都要重新安装的话. 太过于复杂化. 所以自动更新是很有必要的. 一..NET自带的更新方式 以服务器端为主 (自动更新,微软爸 ...
- 使用wubi安装ubuntu14.04出现的常见错误的解决办法
花了一天的时间终于安装上了Ubuntu14.04,过程坎坷,是血泪史,开始报“cannot download the metalink and therefore the ISO”错误,解决后,又报“ ...
- 使用xhprof会在nginx下报502 Bad Gateway错误
使用xhprof会在nginx下报502 Bad Gateway错误 xhprof_enable()xhprof_enable(XHPROF_FLAGS_CPU + XHPROF_FLAGS_MEMO ...
- Java_Collections工具类
Collections 工具类 * Collection与Collections区别 Collection 接口,(大部分集合类的实现接口) Collections 工具类(针对列表) * Colle ...
- Netty实战七之EventLoop和线程模型
简单地说,线程模型指定了操作系统.编程语言.框架或者应用程序的上下文中的线程管理的关键方面.Netty的线程模型强大但又易用,并且和Netty的一贯宗旨一样,旨在简化你的应用程序代码,同时最大限度地提 ...