题意:求一个无向图的点连通度。

把一个点拆成一个入点和一个出点,之间连一条容量为1的有向边,表示能被用一次。最大流求最小割即可。

一些细节的东西:1.源点固定,汇点要枚举一遍,因为最小割割断以后会形成连通分量,在分割以后那个连通分量里的割会更大。

2.每次枚举重建一下图。3.从入点进,出点出,才认为是经过了一个原来的点,那么源点和汇点是不必经过的,所以一个在出点,另外一个枚举入点。

#include<bits/stdc++.h>
using namespace std; const int maxn = ; struct Edge
{
int v,cap,nxt;
}; vector<Edge> E;
vector<Edge> bak;
#define PB push_back int head[maxn]; void AddEdge(int u,int v,int c)
{
bak.PB({v,c,head[u]});
head[u] = bak.size()-;
bak.PB({u,,head[v]});
head[v] = bak.size()-;
} int S,T,cur[maxn],d[maxn],q[maxn]; bool bfs()
{
memset(d,,sizeof(d));
int l = , r = ;
q[r++] = S; d[S] = ;
while(r>l){
int u = q[l++];
for(int i = head[u]; ~i; i = E[i].nxt){
Edge &e = E[i];
if(!d[e.v] && e.cap>){
d[e.v] = d[u] + ;
q[r++] = e.v;
}
}
}
return d[T];
} int dfs(int u,int a)
{
if(u == T||!a) return a;
int flow = ,f;
for(int &i = cur[u]; ~i; i = E[i].nxt){
Edge &e = E[i];
if(d[e.v] == d[u]+ && (f = dfs(e.v,min(a,e.cap)))>){
flow += f; a -= f;
e.cap -= f; E[i^].cap += f;
if(!a) break;
}
}
return flow;
} const int INF = 0x3f3f3f3f; int MaxFlow()
{
int flow = ;
while(bfs()){
memcpy(cur,head,sizeof(head));
flow += dfs(S,INF);
}
return flow;
}
int n,m; void init()
{
memset(head,-,sizeof(head));
bak.clear();
} int main()
{
//freopen("in.txt","r",stdin);
while(~scanf("%d%d",&n,&m)){
init();
for(int i = ; i < n; i++) AddEdge(i,i+n,);
for(int i = ; i < m; i++){
int u,v; scanf(" (%d,%d)",&u,&v);
AddEdge(u+n,v,INF); AddEdge(v+n,u,INF);
}
int ans = n;
S = n;
for(T = ; T < n; T++){
E = bak;
ans = min(ans,MaxFlow());
}
printf("%d\n",ans);
}
return ;
}

UVA1660 Cable TV Network (无向图的点连通度)的更多相关文章

  1. POJ 1966 Cable TV Network (无向图点连通度)

    [题意]给出一个由n个点,m条边组成的无向图.求最少去掉多少点才能使得图中存在两点,它们之间不连通. [思路]回想一下s->t的最小点割,就是去掉多少个点能使得s.t不连通.那么求点连通度就枚举 ...

  2. UVA-1660 Cable TV Network (最小割)

    题目大意:给一张n个点.m条边的无向图,求最小点割集的基数. 题目分析:求无向图最小点割集的基数可以变成求最小割.考虑单源s单汇t的无向图,如果要求一个最小点集,使得去掉这个点集后图不再连通(连通分量 ...

  3. uva1660 Cable TV Network

    点连通度:最少删除几个点使图不连通 拆点就变成了最小割 注意编号.画图就知道u’连v,v’连u. 技巧:不需要枚举S,T.固定S,枚举T即可 这种输入很烦, scanf(" (%d,%d)& ...

  4. UVA1660 电视网络 Cable TV Network

    题目地址:UVA1660 电视网络 Cable TV Network 枚举两个不直接连通的点 \(S\) 和 \(T\) ,求在剩余的 \(n-2\) 个节点中最少去掉多少个可以使 \(S\) 和 \ ...

  5. POJ 1966 Cable TV Network(顶点连通度的求解)

                               Cable TV Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  6. Cable TV Network 顶点连通度 (最大流算法)

    Cable TV Network 题目抽象:给出含有n个点顶点的无向图,给出m条边.求定点联通度   K 算法:将每个顶点v拆成 v'   v''  ,v'-->v''的容量为1.       ...

  7. POJ 1966 Cable TV Network

    Cable TV Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4702   Accepted: 2173 ...

  8. POJ 1966 Cable TV NETWORK(网络流-最小点割集)

                                    Cable TV NETWORK The interconnection of the relays in a cable TV net ...

  9. UVA 1660 Cable TV Network 电视网络(无向图,点连通度,最大流)

    题意:给一个无向图,求其点连通度?(注意输入问题) 思路: 如果只有1个点,那么输出“1”: 如果有0条边,那么输出“0”: 其他情况:用最大流解决.下面讲如何建图: 图的连通度问题是指:在图中删去部 ...

随机推荐

  1. Flutter实战视频-移动电商-16.补充_保持页面状态

    16.补充_保持页面状态 修正一个地方: 设置了item的高度为380 横向列表为380.最终build的高度也增加了50为430. 增加了上面的高度以后,下面那个横线划掉的价格可以显示出来了. 但是 ...

  2. 一个github搞定微信小程序支付系列

    详情请前往github下载示例代码 源码中包含 支付.退款 功能 so easy,项目经理再也不用担心微信支付啦 是的,已经over了

  3. OPENGL0_简介

    opengl定义: Open Graphics Library,开放图形程序接口,跨平台,跨语言.提供了与底层图形硬件的接口,是一个功能强大的底层图形库. opengl库种类: gl:核心库,常规,核 ...

  4. 阿里云物联网 .NET Core 客户端 | CZGL.AliIoTClient:1. 连接阿里云物联网

    文档目录: 说明 1. 连接阿里云物联网 2. IoT 客户端 3. 订阅Topic与响应Topic 4. 设备上报属性 4.1 上报位置信息 5. 设置设备属性 6. 设备事件上报 7. 服务调用 ...

  5. echarts相关属性设置(1)折线图篇

    option = { tooltip: { trigger: 'axis', // axisPointer: { // type: 'cross', // label: { // background ...

  6. JAVA列出某文件夹下的所有文件

    import java.io.*; public class ListFiles { private static String s = ""; private static Bu ...

  7. 115 Distinct Subsequences 不同子序列

    给定一个字符串 S 和一个字符串 T,求 S 的不同的子序列中 T 出现的个数.一个字符串的一个子序列是指:通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串.(譬如," ...

  8. asp也玩三层架构(有源代码)

    实体类 <% Class UserInfo Private mintId Public Property Let UserId(intUserId) mintId = intUserId End ...

  9. JS基础1 — 代码要注意的一些问题

    1.在一对  <script></script>  标签中,有错的js代码,那么该错误代码后面的代码不会执行. 例子:<script> alert("He ...

  10. git的基本使用命令操作

    Linux操作命令行:    mkdir - 创建文件夹,    cd - 切换文件路径    pwd - 显示文件路径    ls -ah - 可以查看隐藏的文件夹名(.git)    cat 文件 ...