题意:要把所有的节点都访问一次,并且不能重复访问,有两种方式访问,一种是根据树上的路径

走和当前节点连接的下一个节点cost x, 或者可以不走树上边,直接跳到不与当前节点连接的节点,cost y

分析:

别被树吓着!

一定会走n-1条路,那么就是有一些走树上的边,有一些不走。

如果树上的路径cost更大(x >= y),那么尽可能的不走树上的路径,那么根据尝试可以找到规律

如果有一个节点是所有节点的父节点,也就是说这个节点的度为n-1,那么只会走一个x其他都是y

如果没有这个节点,一定可以全部走y

另一种情况如果(x < y),那么也就是说要尽可能的多走树上的边,我们知道一个节点只能访问一次,也就是说

一个节点最多只能连两条边出去,然后dfs搜索,找到最多可以走多少条,每个节点的度数如果不被剪完就可以继续连,

剩下的只能走y。

 #include <stdio.h>
#include <string.h>
#include <iostream>
#include <queue>
#include <vector>
#include <algorithm>
#include <stack>
#include <set>
#include <map>
#include <math.h>
#define pb push_back
#define CLR(a) memset(a, 0, sizeof(a));
#define MEM(a, b) memset(a, b, sizeof(a));
#define fi first
#define se second using namespace std; typedef long long ll; const int MAXN = ;
const int MAXV = ;
const int MAXE = ;
const int INF = 0x3f3f3f3f;
ll x, y, n;
struct Edge
{
int to, next;
Edge () {}
Edge(int to, int next) : to(to), next(next) {}
}edge[MAXN << ];
int num;
int head[MAXN];
void Add(int from, int to)
{
edge[num] = Edge(to, head[from]);
head[from] = num++;
}
int deg[MAXN];
ll ans = ;
ll len = ;
int cnt = ;
bool dfs(int crt, int fa)
{
int rem = ;
for (int t = head[crt]; t != -; t = edge[t].next)
{
Edge e = edge[t];
int v = e.to;
if (v == fa) continue;
if (dfs(v, crt) && rem > )
{
len++; rem--;
}
}
return rem > ;
} int main()
{
//freopen("in.txt", "r", stdin);
while (~scanf("%lld%lld%lld", &n, &x, &y))
{
MEM(head, -);
MEM(edge, -);
CLR(deg);
num = ;
len = ;
for (int i = ; i < n-; i++)
{
int u, v;
scanf("%d%d", &u, &v);
Add(u, v);
Add(v, u);
deg[u]++;
deg[v]++;
}
bool done = false;
if (x >= y)
{
for (int i = ; i <= n; i++)
{
if (deg[i] == n-)
{
ans = y*(n-)+x;
printf("%lld\n", ans);
done = true;
break;
}
}
if (done) continue;
ans = (n-)*y;
printf("%lld\n", ans);
continue;
}
dfs(, ); ans = len*x + (n--len)*y;
printf("%lld\n", ans);
}
return ;
}

CodeForces 618D Hamiltonian Spanning Tree的更多相关文章

  1. Codeforces 618D Hamiltonian Spanning Tree(树的最小路径覆盖)

    题意:给出一张完全图,所有的边的边权都是 y,现在给出图的一个生成树,将生成树上的边的边权改为 x,求一条距离最短的哈密顿路径. 先考虑x>=y的情况,那么应该尽量不走生成树上的边,如果生成树上 ...

  2. 【19.27%】【codeforces 618D】Hamiltonian Spanning Tree

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  3. [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]

    这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...

  4. codeforces 609E Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  5. codeforces 609E. Minimum spanning tree for each edge 树链剖分

    题目链接 给一个n个节点m条边的树, 每条边有权值, 输出m个数, 每个数代表包含这条边的最小生成树的值. 先将最小生成树求出来, 把树边都标记. 然后对标记的边的两个端点, 我们add(u, v), ...

  6. Codeforces 1133 F2. Spanning Tree with One Fixed Degree 并查集+生成树

    好久没更新博客了,一直懒得动,这次更新一下. 题意大概是:给出一个图,求它的一个一号节点的度数恰好为D的生成树的方案. 一开始随便水了个乱搞贪心,不出意外并没有过. 仔细思考之后,对于这个问题我们可以 ...

  7. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  8. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  9. Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST

    E. Minimum spanning tree for each edge   Connected undirected weighted graph without self-loops and ...

随机推荐

  1. javaweb基础(9)_Servlet生成验证码图片

    一.BufferedImage类介绍 生成验证码图片主要用到了一个BufferedImage类,如下:

  2. vue 前端判断输入框不能输入0 空格。特殊符号。

    oninput="value=value.replace(/[^\d.]/g,'').replace(/\.{2,}/g,'.').replace('.','$#$').replace(/\ ...

  3. js函数节流和函数防抖

    概念解释 函数节流: 频繁触发,但只在特定的时间内才执行一次代码 函数防抖: 频繁触发,但只在特定的时间内没有触发执行条件才执行一次代码 函数节流 函数节流应用的实际场景,多数在监听页面元素滚动事件的 ...

  4. Python学习笔记5(函数)

    [摘要]本文详细介绍python中的函数,以及与之相关的参数和作用域的概念,并介绍递归的概念以及在程序中的应用. 函数定义 定义函数要用函数定义语句def.如下: def hello(name): r ...

  5. 一些恶搞人的c++程序

    top1: 不停打开的cmd(磁盘操作系统) 代码如下: #include<windows.h> using namespace std; int main() { system(&quo ...

  6. JDBC操作数据库的详细步骤

    1.注册驱动 告知JVM使用的是哪一个数据库的驱动 2.创建连接 使用JDBC中的类,完成对MySQL数据库的连接 3. 得到执行sql语句的Statement对象 通过连接对象获取对SQL语句的执行 ...

  7. Golang 简单 http 代理转发

    程序基本实现了对http的完整转发,目前暂不支持https windows需要在设置中的网络>代理设置为手动,并开启代理服务器,填写ip和端口 // httpForward package ma ...

  8. Python爬虫系列-Requests库详解

    Requests基于urllib,比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求. 实例引入 import requests response = requests.get( ...

  9. Linux扩增卷组、逻辑卷以及缩减逻辑卷

    今天我们将了解怎样来扩展卷组,扩展和缩减逻辑卷.在这里,我们可以缩减或者扩展逻辑卷管理(LVM)中的分区,LVM也可称之为弹性卷文件系统. 前置需求使用LVM创建弹性磁盘存储——第一部分 什么时候我们 ...

  10. 计蒜客 The 2018 ACM-ICPC Chinese Collegiate Programming Contest Rolling The Polygon

    include <iostream> #include <cstdio> #include <cstring> #include <string> #i ...