Description

给你$n$,$m$,求 $\sum^n_{i=1} \sum^m_{j=1} \ lcm(x,y)$

答案对$100000009$取模。

多组数据。

Input

第一行有一个正整数$t$表示数据组数

接下来$t$行每行有两个正整数$n$,$m$

Output

$t$行,第$i$行为第$i$组询问的答案。

HINT

对于$100\%$的数据:$t\leq 10000,n,m\leq {10}^7$

$100000009$不是一个质数。

题解:

第一次打莫演,手推公式。(我为什么会做这道题)

\begin{aligned}
ans&=\sum^n_{i=1}\sum^m_{j=1}\frac{ij}{gcd(i,j)}\\
&=\sum^n_d\sum^n_{i=1}\sum^m_{j=1}\frac{ij}{d}[gcd(i,j)=d]\\
&=\sum^n_d\sum^{\lfloor\frac{n}{d}\rfloor}_{i=1}\sum^{\lfloor\frac{m}{d}\rfloor}_{j=1}\frac{d^2ij}{d}[gcd(i,j)=1]\\
&=\sum^n_d\sum^{\lfloor\frac{n}{d}\rfloor}_{i=1}\sum^{\lfloor\frac{m}{d}\rfloor}_{j=1}dij\sum_{k\mid gcd(i,j)}\mu(k)&(\sum_{d\mid n}\mu(d)=[n=1])\\
&=\sum^n_k\mu(k)\sum^n_d\sum^{\lfloor\frac{n}{d}\rfloor}_{i=1}[k\mid i]\sum^{\lfloor\frac{m}{d}\rfloor}_{j=1}[k\mid j]dij\\
&=\sum^n_k\mu(k)\sum^n_d\sum^{\lfloor\frac{n}{kd}\rfloor}_{i=1}\sum^{\lfloor\frac{m}{kd}\rfloor}_{j=1}dk^2ij\\
&=\sum^n_k\mu(k)\sum^n_d\sum^{\lfloor\frac{n}{kd}\rfloor}_{i=1}i\sum^{\lfloor\frac{m}{kd}\rfloor}_{j=1}j\cdot dk^2\\
&设 T=kd\\
ans&=\sum^n_{T=1}\sum^{\lfloor\frac{n}{T}\rfloor}_{i=1}i\sum^{\lfloor\frac{m}{T}\rfloor}_{j=1}j\sum_{d\mid T}\mu(\frac{T}{d})\frac{T^2}{d}
\end{aligned}

第一个部分 $ \sum^{\lfloor\frac{n}{T}\rfloor}_{i=1}i\sum^{\lfloor\frac{m}{T}\rfloor}_{j=1}j $ 用等差数列求和 $O(1)$ 求出

第二个部分 $ \sum_{d\mid T}\mu(\frac{T}{d})\frac{T^2}{d} $ 线性筛 $O(n)$ 预处理处

设$ g(x)=\sum_{d\mid T}\mu(\frac{T}{d})\frac{T^2}{d} $,考虑怎么求$g(x)$

如果说x为质数,那么根据公式$g(x)=x-x^2$

如果$x$不为质数,我们设$x=i\times p$,其中$p$为质数,那么有两种情况

$p\nmid i$,由于$i$和$p$互质而$g(x)$为积性函数,$g(x)=g(i\times p)=g(i)\times g(p)$

$p\mid i$,这个时候就有点不是很好搞了……

我们可以把i表示为$t\times p^k$($t$与$p$互质)

那么我们就尝试一下从乘了一个$p$会有什么影响这个方面来考虑一下

考虑$g(p^k)$的值,显然根据$\mu$的定义,只有$\mu(1)$和$\mu(p)$能够提供贡献(其他的$p$的指数都$>1$,所以都是$0$)

那么我们就可以得到$g(p^k)=f(1)p^k+f(p)p^{k-1}$

然后写出$g(p^{k+1})$的表达式,会发现是$f(1)p^{k+1}+f(p)p^k$

也就是说$g(p^{k+1})=g(p^k)p$

那么就可以得到$g(x)=g(i^p)=g(t\times p^k\times p)=g(t)\times g(p^k)\times p=g(x)\times p$

然后就可以顺利筛出来啦

最外层循环用数论分块,总时间 $O(\sqrt{n})$

CODE:

 #include<iostream>
#include<cstdio>
using namespace std; #define mod 100000009LL
#define N 10000005
int t,n,m,cnt,ans;
long long pri[N],g[N],sum[N];
bool vis[N]; void init(){
sum[]=g[]=;
for(int i=;i<N;i++){
sum[i]=1LL*i*(i+)/%mod;
if(!vis[i]){
g[i]=(i-1LL*i*i%mod+mod)%mod;
pri[++cnt]=i;
}
for(int j=;j<=cnt&&i*pri[j]<N;j++){
vis[i*pri[j]]=true;
if(i%pri[j])
g[i*pri[j]]=g[i]*g[pri[j]]%mod;
else
g[i*pri[j]]=g[i]*pri[j]%mod;
}
}
for(int i=;i<N;i++)(g[i]+=g[i-])%=mod;
} int main(){
scanf("%d",&t);
init();
while(t--){
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);
ans=;
for(int i=,pos=;i<=n;i=pos+){
pos=min(n/(n/i),m/(m/i));
ans+=sum[n/i]*sum[m/i]%mod*(g[pos]-g[i-]+mod)%mod;
ans%=mod;
}
printf("%d\n",ans);
}
}

【BZOJ2693】jzptab (莫比乌斯反演)的更多相关文章

  1. BZOJ2693: jzptab(莫比乌斯反演)

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2068  Solved: 834[Submit][Status][Discuss] Descripti ...

  2. bzoj2693 jzptab 莫比乌斯反演|题解

    Description   Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的结果 Sample Input 1 4 5 ...

  3. 【BZOJ2693】jzptab [莫比乌斯反演]

    jzptab Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description   求 Input 第一行一个 ...

  4. 【bzoj2693】jzptab 莫比乌斯反演+线性筛

    题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...

  5. [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)

    题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...

  6. 【BZOJ】2693: jzptab 莫比乌斯反演

    [题意]2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000. [算法]数论(莫比乌斯反演) [题解]由上一题, $ans=\sum_{g\leq min(n,m)}g\s ...

  7. BZOJ 2693: jzptab [莫比乌斯反演 线性筛]

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1194  Solved: 455[Submit][Status][Discu ...

  8. BZOJ 2693: jzptab( 莫比乌斯反演 )

    速度居然#2...目测是因为我没用long long.. 求∑ lcm(i, j) (1 <= i <= n, 1 <= j <= m) 化简之后就只须求f(x) = x∑u( ...

  9. luoguP1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题意 注:默认\(n\leqslant m\). 所求即为:\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 因为\(i*j=\gcd(i, ...

  10. [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演

    ---题面--- 题解: $$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}{\frac{ij}{gcd(i, j)}}$$ 改成枚举d(设n < m) $$ans ...

随机推荐

  1. SQL Server 游标的应用

    ----------------SQL游标应用----------------- 今天由于业务需求,需要在存储过程中实现有一个表的主键去匹配在另一个表中作为外键所对应的数值 ,若在C#中则非常简单只需 ...

  2. ★iOS 性能测试工具 SDK

    一.概括 1. 做一个类似GT的性能测试工具: 2. 第一期主要是CPU.内存功能,要求可以绘制曲线,可以选择曲线区间,自动计算最小值.最大值.均值等,支持曲线全屏显示 目标的视觉效果是类似股票走势图 ...

  3. redis学习笔记(3)

    redis学习笔记第三部分 --redis持久化介绍,事务,主从复制 三,redis的持久化 RDB(Redis DataBase)AOF(Append Only File) RDB:在指定的时间间隔 ...

  4. php 常用函数集合(持续更新中...)

    php 常用函数集合 在php的开发中,巧妙的运用php自带的一些函数,会起到事半功倍的效果,在此,主要记录一些常用的函数 1.time(),microtime()函数 time():获取当前时间戳 ...

  5. python3.6:DLL load failed:找不到指定的模块(from PyQt5 import QtCore)

    本人小白搭建pyqt环境时遇到问题 运行代码 from PyQt5 import QtCore' 发现错误 ImportError: DLL load failed: 找不到指定的模块 这个问题折磨了 ...

  6. 在windows7 32ibt安装MongoDB数据库的方法及连接失败解决方案

    参考 https://www.cnblogs.com/cnblogs-jcy/p/6734889.html http://yunkus.com/mongodb-install-config-in-wi ...

  7. ACM-ICPC 2017 Asia Urumqi G. The Mountain

    All as we know, a mountain is a large landform that stretches above the surrounding land in a limite ...

  8. selenium2-元素管理方式及解析

    1.管理文件格式:yaml 2.Yaml里面的内容格式:   3.格式说明: baidu_input后面接上":",直接回车,然后空两格 type与value这两个key是固定 ...

  9. CDH4 journalnode方式手工安装手册之一

    一.                                环境部署概况   cdh-master 172.168.10.251 cdh-node1 172.168.10.251 cdh-no ...

  10. delphi xe7 多线程调用CMD,使用管道,临界区技术,实现指定用户名,多线程,异步返回CMD命令结果到memo

    第一次发这个,发现格式很乱,不好看,可以用XE7的project--format project sources命令格式化一下代码. 后面我会上传此次修改函数用的源代码到云盘 链接: http://p ...