UVA11551 Experienced Endeavour —— 矩阵快速幂
题目链接:https://vjudge.net/problem/UVA-11551
题意:
给定一列数,每个数对应一个变换,变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少
题解:
构造矩阵:要加的位置值为1,其余位置为0。然后用快速幂计算。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
//const int MOD = 1000000007;
const int MAXN = 1e6+; const int MOD = ;
const int Size = ;
struct MA
{
LL mat[Size][Size];
void init()
{
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
mat[i][j] = (i==j);
}
}; MA mul(MA x, MA y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
for(int k = ; k<Size; k++)
ret.mat[i][j] += (1LL*x.mat[i][k]*y.mat[k][j])%MOD, ret.mat[i][j] %= MOD;
return ret;
} MA qpow(MA x, LL y)
{
MA s;
s.init();
while(y)
{
if(y&) s = mul(s, x);
x = mul(x, x);
y >>= ;
}
return s;
} int main()
{
LL T, n, r, a[];
scanf("%lld", &T);
while(T--)
{
scanf("%lld%lld", &n, &r);
for(int i = ; i<n; i++)
scanf("%lld", &a[i]); MA s;
memset(s.mat, , sizeof(s.mat));
for(int i = ; i<n; i++)
{
int m, x;
scanf("%d", &m);
while(m--)
{
scanf("%d", &x);
s.mat[i][x] = ;
}
} s = qpow(s, r);
for(int i = ; i<n; i++)
{
LL sum = ;
for(int j = ; j<n; j++)
sum += s.mat[i][j]*a[j], sum %= MOD;
printf("%lld", sum);
if(i!=n-) printf(" ");
}
printf("\n");
}
}
UVA11551 Experienced Endeavour —— 矩阵快速幂的更多相关文章
- F - Experienced Endeavour 矩阵快速幂
Alice is given a list of integers by Bob and is asked to generate a new list where each element in t ...
- UVA 11551 - Experienced Endeavour(矩阵高速幂)
UVA 11551 - Experienced Endeavour 题目链接 题意:给定一列数,每一个数相应一个变换.变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少 思路:矩阵高速幂,要 ...
- uva11551矩阵快速幂
题目看了半天没看懂,,就是把一个数列更新r次,每次更新就是计算和,就是每一个数,只要出现了的表号都要加上去,具体看代码 矩阵快速幂实现加速 #include<map> #include&l ...
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- 51nod 算法马拉松18 B 非010串 矩阵快速幂
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...
- 51nod 1113 矩阵快速幂
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- HDU5950(矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...
- 51nod 1126 矩阵快速幂 水
有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...
随机推荐
- Nginx三种模式的虚拟主机(附Apache基于域名的虚拟主机)
1.安装nginx # pcre中文"perl兼容正则表达式",安装pcre库是为了让nginx支持具备URL重写功能 # 的Rewrite模块,rewrite可以实现动态页面转成 ...
- 【ZJOI2016】大♂森林
题目描述 小Y家里有一个大森林,里面有 $n$ 棵树,编号从 $1$ 到 $n$ .一开始这些树都只是树苗,只有一个节点,标号为 $1$ .这些树都有一个特殊的节点,我们称之为生长节点,这些节点有生长 ...
- (入门SpringBoot)SpringBoot结合redis(四)
SpringBoot整合redis: 1.引入jar <!-- 引入redis依赖 --><dependency> <groupId>org.springf ...
- pyquery库的使用
pyquery标签选择 获取了所有的img标签(css选择器,你也可以换成不同的class和id) import requests import re from pyquery import PyQu ...
- 从零開始开发Android版2048 (二)获取手势信息
今天是尝试開始Android版2048小游戏的第二天.在今天,我主要学习了怎样获取用户在屏幕滑动的手势,以及对布局进行了一些小小的完好. 获取用户操作的手势(比方向左滑.向右滑等)主要用到了Gestu ...
- vue-router钩子beforeRouteEnter函数获取到this实例
官方文档: const Foo = { template: `...`, beforeRouteEnter (to, from, next) { // 在渲染该组件的对应路由被 confirm 前调用 ...
- c#高级编程笔记----委托
因为定义委托基本上是定义一个新类,所以可以在定义类的任何相同地方定义委托,也就是说,可以在另一个类的内部定义,也可以在任何类的外部定义,还可以在名称空间中把委托定义为顶层对象.根据定义的可见性,和委托 ...
- hdu 1081 & poj 1050 To The Max(最大和的子矩阵)
转载请注明出处:http://blog.csdn.net/u012860063 Description Given a two-dimensional array of positive and ne ...
- 笔记16 C# typeof() & GetType()
C#中任何对象都具有GetType()方法,它的作用和typeof()相同,返回Type类型的当前对象的类型.typeof(x)中的x,必须是具体的类名.类型名称等,不可以是变量名称:GetType( ...
- UVA - 11827 - Maximum GCD,10200 - Prime Time (数学)
两个暴力题.. 题目传送:11827 Maximum GCD AC代码: #include <map> #include <set> #include <cmath> ...