LVDT
什么是 LVDT?
LVDT 是线性可变差动变压器的缩写。 它是一种常见类型的机电传感器,可将其以机械方式耦合的物体的直线运动转换为对应的电气信号。LVDT 线性位移传感器随时可用,可以测量各种移动,小到百万分之一英寸,大到几英寸,但也能够测量大到 ±30 英寸(±0.762 米)的位置。图 1 显示了典型 LVDT 的元件。该变压器的内部结构包括一个初级绕组和一对以相同方式缠绕的次级绕组,两个次级绕组对称分布在初级绕组的两侧。线圈缠绕在具有热稳定性的单件式中空玻璃强化聚合物上,加上防潮层后,包裹在具有高磁导率的磁屏蔽层内,然后固定在圆柱形不锈钢护套中。该线圈配件通常是位移传感器的静止元件。
图 1:所示为位于 LVDT 中央的初级绕组。两个次级线圈对称地缠绕在初级线圈的两侧(对于“短行程”LVDT,如图所示),或者位于初级线圈的顶部(对于“长行程” LVDT)。两个次级绕组通常以“反向串联”(差动)方式连接。
它是一种常见类型的机电传感器,可将其以机械方式耦合的物体的直线运动转换为对应的电气信号。
LVDT 的活动元件是透磁性材料的独立管状电枢。 这称为纤芯,可在线圈的中空孔内沿轴向自由移动,并通过机械方式耦合到需测量位置的物体上。该孔通常足够大,能够在纤芯和孔之间提供很大的径向间隙,使其与线圈之间不会产生物理接触。运行时,由具有适当振幅和频率的交流电对 LVDT 的初级绕组进行通电,这一过程称为初级励磁。LVDT 的电气输出信号是两个次级绕组之间的差分交流电压,随纤芯在 LVDT 线圈内的轴向位置而异。通常情况下,该交流输出电压由适当的电子电路转换为更便于使用的高电平直流电压或电流。
LVDT 是怎样工作的?
图 2 显示当 LVDT 的纤芯处于不同的轴向位置时会出现什么情况。 LVDT 的初级绕组 P 由恒定振幅交流电源进行通电。由此形成的磁通量由纤芯耦合到相邻的次级绕组 S1 和 S2。如果纤芯位于 S1 和 S2 的中间,则会向每个次级绕组耦合相等的磁通量,因此绕组 S1 和 S2 中各自包含的 E1 和 E2 是相等的。在该参考中间纤芯位置(称为零点),差分电压输出 (E1 - E2) 本质上为零。如图 2 中所示,如果移动纤芯,使其与 S1 的距离小于与 S2 的距离,则耦合到 S1 中的磁通量会增加,而耦合到 S2 中的磁通量会减少,因此感生电压 E1 增大,而 E2 减小,从而产生差分电压 (E1 - E2)。相反,如果纤芯移动得更加靠近 S2,则耦合到 S2 中的磁通量会增加,而耦合到 S1 中的磁通量会减少,因此 E2 增大,而 E1 减小,从而产生差分电压 (E2 - E1)。
图 2:显示当 LVDT 的纤芯处于不同的轴向位置时会出现什么情况。
图 3A 显示差分输出电压 EOUT 的大小是如何随着纤芯位置变化的。 自零点开始最大纤芯位移的 EOUT 值取决于初级励磁电压的振幅和特定 LVDT 的敏感因子,但通常为几个伏特 RMS。该交流输出电压 EOUT(以初级励磁电压作为参考)的相位角会保持不变,直到纤芯的中心经过零点,此时该相位角突然改变 180 度,如图 3B 中所示。可以通过相应的电路,使用该 180 度相移来确定纤芯离开零点的方向。图 3C 中对其进行了显示,其中输出信号的极性表示纤芯与零点的位置关系。该图还显示 LVDT 的输出在其指定的纤芯移动范围内具有很好的线性,但可以在更大的范围使用传感器,此时输出线性会有所降低。
图 3:LVDT 的输出特性随纤芯的位置不同而变化。全程输出是一个较大的信号(通常为一伏特或更大),通常不需要放大。请注意,LVDT 会继续在超过 100% 全程的范围运行,但线性会降低。
LVDT 支持电子设备
尽管 LVDT 是电力变压器,但它正常运行所需交流电源的振幅和频率与常规电源线大不相同(通常为 3 Vrms,3 kHz)。 为 LVDT 提供该励磁电源是 LVDT 支持电子设备(有时也称为 LVDT 信号调节设备)的多项功能之一。其他功能包括将 LVDT 的低电平交流电压输出转换为更方便使用的高电平直流信号、对 LVDT 纤芯经过零点时来自 180 度输出相移的方向信息进行解码以及提供可电气调节的输出零电平。提供了各种 LVDT 信号调节电子设备,包括用于原始设备制造商应用的芯片级和板级产品以及供用户使用的模块和完整实验室仪器。
DIN 轨道安装 LVDT 信号调节器,具有模拟电压、4-20mA 和 RS-485 输出信号调节
也可以自带支持电子设备,如图 4 中所示的 DC-LVDT。 这些易于使用的位移传感器几乎具有 LVDT 的所有优势,同时具有直流输入、直流输出操作的简易性。当然,具有集成式电子元件的 LVDT 可能不适合某些应用,或者可能无法针对某些安装环境进行相应的封装。
图 4:左侧的 DC-LVDT 横断面视图显示内置的信号调节电子设备模块。此模块固定在该图纸中未显示的灌胶复合物中。
英文链接:http://www.te.com.cn/content/dam/te-com/documents/sensors/global/lvdt-tutorial.pdf
LVDT的更多相关文章
- Java学习之路(七)
1:什么是异常? 中断了正常指令流的事件. 异常是一个对象 ,在出现异常时,虚拟机会生成一个异常对象 生成对象的类是由 JDK 提供的
- java获取一年的周数和间隔天数
java获取一年的周数和间隔天数 import java.text.ParseException; import java.text.SimpleDateFormat; import java.uti ...
- Python 进阶(三)面向对象编程基础
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAkMAAAFGCAIAAADmfgziAAAgAElEQVR4nOx993vT1v7/93/5EEt2Eg
- Danfoss Motor - Automotive Motor: What Sensors Are There?
The Danfoss Motor states that the motor sensor control system is the heart of the entire autom ...
随机推荐
- Springboot框架中request.getInputStream()获取不到上传的文件流
Springboot框架中用下面的代码,使用request.getInputStream()获取不到上传的文件流 @PostMapping("/upload_img") publi ...
- [SPOJ1557] Can you answer these queries II
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2482 [算法] 线段树维护历史最值 时间复杂度 : O(NlogN) [代码] #i ...
- P2383 狗哥玩木棒
题目背景 狗哥又趁着语文课干些无聊的事了... 题目描述 现给出一些木棒长度,那么狗哥能否用给出的木棒(木棒全用完)组成一个正方形呢? 输入输出格式 输入格式: 输入文件中的第一行是一个整数n表示测试 ...
- MongoDB 复制集节点增加移除及节点属性配置
复制集(replica Set)或者副本集是MongoDB的核心高可用特性之一,它基于主节点的oplog日志持续传送到辅助节点,并重放得以实现主从节点一致.再结合心跳机制,当感知到主节点不可访问或宕机 ...
- tinymix
1. tinymix:列出所有的 sound kcontrol 2. tinymix "Capture Volume":读出里面的值 3. tinymix "Captur ...
- SPOJ(后缀数组求不同子串个数)
DISUBSTR - Distinct Substrings Given a string, we need to find the total number of its distinct subs ...
- vuex本地存储
vuex与localstorage 区别:vuex数据存储的内存,localstorage的数据存储在本地 应用场景:vuex用于组件之间的传值,localstorage用于不同页面之间的传值 永久性 ...
- SpringMVC注解说明
@controller 通过@controller标注即可将class定义为一个controller类. @RequestMapping value 表示需要匹配的url的格式. method 表示所 ...
- 技术胖Flutter第三季-18布局CardWidget 卡片布局组件
技术胖Flutter第三季-18布局CardWidget 卡片布局组件 博客地址: https://jspang.com/post/flutter3.html#toc-420 最外面是Card布局,里 ...
- Channel的使用
Channel必须要通过buffer来读写 1. Channel需要通过IO流的getChannel()方法获取 2. buffer需要通过Channel的map()方法获取 package com. ...