取石子游戏

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4657    Accepted Submission(s): 2465

Problem Description

两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆
中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是
败者。
 
Input
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。
 
Output
输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。
 
Sample Input
2 1
8 4
4 7
 
Sample Output
0
1
0
 
Source
NOI
copy的讲解
/*(威佐夫博弈)(http://baike.baidu.com/view/1952620.htm)
1、在一堆石子中取走任意多颗;
2、在两堆石子中取走相同多的任意颗;
约定取走最后一颗石子的人为赢家,求必胜策略。
两堆石头地位是一样的,我们用余下的石子数(a,b)来表示状态,并画在平面直角坐标系上。
和前面类似,(0,0)肯定是 P 态,又叫必败态。(0,k),(k,0),(k,k)系列的节点肯定不是 P 态,而是必胜态,你面对这样的局面一定会胜,只要按照规则取一次就可以了。再看 y = x 上方未被划去的格点,(1,2)是 P 态。k > 2 时,(1,k)不是 P 态,比如你要是面对(1,3)的局面,你是有可能赢的。同理,(k,2),(1 + k, 2 + k)也不是 P 态,划去这些点以及它们的对称点,然后再找出 y = x 上方剩余的点,你会发现(3,5)是一个 P 态,如此下去,如果我们只找出 a ≤ b 的 P 态,则它们是(0,0),(1,2),(3,5),(4,7),(6,10)……它们有什么规律吗?
忽略(0,0),很快会发现对于第 i 个 P 态的 a,a = i * (sqrt(5) + 1)/2 然后取整;而 b = a + i。居然和黄金分割点扯上了关系。
前几个必败点如下:(0,0),(1,2),(3,5),(4,7),(6,10),(8,13)……可以发现,对于第k个必败点(m(k),n(k))来说,m(k)是前面没有出现过的最小自然数,n(k)=m(k)+k。
判断一个点是不是必败点的公式与黄金分割有关(我无法给出严格的数学证明,谁能给出严格的数学证明记得告诉我),为:
m(k) = k * (1 + sqrt(5))/2
n(k) = m(k) + k;
*/ 自我理解奇异状态和非奇异状态一定可以认为控制的,必竟一个整数只会出现在一个奇异状态中,不会出现多次,完全可以认为的变换状态
威佐夫博弈
#include<stdio.h>
#include<string.h>
#include<math.h>
int main()
{
int n,m,temp,k;
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n<m)
{
temp=n;
n=m;
m=temp;
}
k=n-m;
n=(int)(k*(+sqrt())/2.0);
if(n==m)
printf("0\n");
else
printf("1\n");
}
return ;
}

hdu 1527 威佐夫博弈的更多相关文章

  1. hdu 1527威佐夫博弈

    //http://www.cnblogs.com/bo-tao/archive/2012/04/16/2452633.html #include<stdio.h> #include< ...

  2. hdu 2177 威佐夫博弈变形

    取(2堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  3. hdu 1527 (威佐夫博弈)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1527 Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石 ...

  4. HDU 1527 取石子游戏 (威佐夫博弈)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1527 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是 ...

  5. 取石子游戏 HDU 1527 博弈论 威佐夫博弈

    取石子游戏 HDU 1527 博弈论 威佐夫博弈 题意 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两 ...

  6. HDU 1527 取石子游戏(威佐夫博弈)

    基础威佐夫博弈,判断奇异局势即可,判断方式为k为两数之差绝对值,(sqrt(5) + 1) / 2 * k若等于两数小者则为奇异局势,也就是必败态. #include<stdio.h> # ...

  7. HDU 1527 取石子游戏(威佐夫博弈)

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...

  8. 题解报告:hdu 1527 取石子游戏(威佐夫博弈)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1527 Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石 ...

  9. HDU 5973 Game of Taking Stones 威佐夫博弈+大数

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5973 Game of Taking Stones Time Limit: 2000/1000 MS ...

随机推荐

  1. lnmp.org + phpstorm + xdebug

    lnmp.org下载安装包安装之: lnmp是个集成安装包,就不用自己在配置lnmp环境 安装phpstorm,破解方法:注册服务器为http://idea.lanyus.com 就可以了 xdebu ...

  2. thinkphp分页集成

    控制器: $User = M('webcase'); //  实例化 User 对象 $list = $User->order('id desc')->page($_GET['p'].', ...

  3. HTTP 三次握手  建立连接 和  四次握手断开连接

    三次握手建立连接    第一次握手:主机A发送位码为syn=1,随机产生seq number=1234567的数据包到服务器,主机B由SYN=1知道,A要求建立联机: 第二次握手:主机B收到请求后要确 ...

  4. Android学习总结(七)———— 本地广播

    一.本地广播 2.1 基本概念 由于之前的广播都是全局的,所有应用程序都可以接收到,这样就很容易会引起安全性的问题,比如说我们发送一些携带关键性数据的广播有可能被其他的应用程序截获,或者其他的程序不停 ...

  5. UVa 12219 Common Subexpression Elimination (stl,模拟,实现)

    一般来说,把一颗子树离散成一个int,把一个结点的字符离散成一个int会方便处理 直接map离散.当然一个结点最多只有4个小写字母,也可以直接编码成一个27进制的整数,舍掉0,为了区分0和0000. ...

  6. codeforces Gym 100338E Numbers (贪心,实现)

    题目:http://codeforces.com/gym/100338/attachments 贪心,每次枚举10的i次幂,除k后取余数r在用k-r补在10的幂上作为候选答案. #include< ...

  7. stringstream clear与str("")的问题

    一.str与clear函数 C++Reference对于两者的解释: 可见:clear()用来设置错误状态,相当于状态的重置:str用来获取或预置内容 二.区别 运行下面测试代码: #include& ...

  8. 【iview input 回车刷页面bug】input 就一个的时候 有form的时候 回车会刷页面,如果就一个input,可以不要form,或者form里面两个input 将一个input v-show false 就可以了

    [iview input 回车刷页面bug]input 就一个的时候 有form的时候 回车会刷页面,如果就一个input,可以不要form,或者form里面两个input 将一个input v-sh ...

  9. Active Directory网域

    Active Directory网域 3.1Windows网络的管理方式 3.1.1工作组模式 工作组由一组用网络连接在一起的计算机组成,他们将计算机内的资源共享给用户访问.工作组网络也被称为“对等式 ...

  10. ios之自定义导航栏上的返回按钮

    导航栏的按钮,右边的按钮是可以自己随意添加的.但左边的返回按钮怎么定制?你会说,添加一个自己的按钮呗!你可以试试看,这样行不行. 正确的答案是重载UINavigationController类的pus ...