贪心的经典套路:替换思想;有点抽象

Description

FJ打算好好修一下农场中某条凹凸不平的土路。按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也
就是说,高度上升与高度下降的路段不能同时出现在修好的路中。 整条路被分成了N段,N个整数A_1, ... , A_N 
(1 <= N <= 2,000)依次描述了每一段路的高度(0 <= A_i <= 1,000,000,000)。FJ希望找到一个恰好含N个元素的
不上升或不下降序列B_1, ... , B_N,作为修过的路中每个路段的高度。由于将每一段路垫高或挖低一个单位的花
费相同,修路的总支出可以表示为: |A_1 - B_1| + |A_2 - B_2| + ... + |A_N - B_N| 请你计算一下,FJ在这
项工程上的最小支出是多少。FJ向你保证,这个支出不会超过2^31-1。

Input

* 第1行: 输入1个整数:N 
* 第2..N+1行: 第i+1行为1个整数:A_i

题目分析

朴素的$O(n^2)dp$

注意到n比较小而ai非常大;但是第一眼看上去好像不能离散化。

发现在补全路面过程前后,是不会新多出某种路面高度的。可以理解为,既然已经变成单调的序列,那就没有必要再改变任何高度了。

于是可以离散化高度,$f[i][j]$表示$i$位置高度为$第j种高度$的最小代价。

神奇的$O(nlogn)贪心$

做法来源:题解 P2893 【[USACO08FEB]修路Making the Grade】

发现我们只关心代价而不关心每个位置究竟是增还是减,那么这里就涉及到了贪心中的一类比较抽象的“替换”思想。

形象地说就是对于同一个代价,它既可以让高的变低;也可以让低的变高。“替换”正是利用了这一点的特性。

 #include<bits/stdc++.h>
const int maxn = ;
const int INF = ; int n,a[maxn],ans,cnt;
std::priority_queue<int> q; int read()
{
char ch = getchar();
int num = , fl = ;
for (; !isdigit(ch); ch=getchar())
if (ch=='-') fl = -;
for (; isdigit(ch); ch=getchar())
num = (num<<)+(num<<)+ch-;
return num*fl;
}
void clears(std::priority_queue<int> &q)
{
std::priority_queue<int> emt;
std::swap(emt, q);
}
int main()
{
n = read(), ans = INF, cnt = ;
for (int i=; i<=n; i++) a[i] = read();
for (int i=; i<=n; i++)
{
q.push(a[i]);
if (q.top() > a[i]){
cnt += q.top()-a[i], q.pop(), q.push(a[i]);
}
}
ans = cnt, clears(q), cnt = ;
std::reverse(a+, a+n+);
for (int i=; i<=n; i++)
{
q.push(a[i]);
if (q.top() > a[i]){
cnt += q.top()-a[i], q.pop(), q.push(a[i]);
}
}
ans = std::min(ans, cnt);
printf("%d\n",ans);
return ;
}

END

【贪心】bzoj1592: [Usaco2008 Feb]Making the Grade 路面修整的更多相关文章

  1. [BZOJ1592] [Usaco2008 Feb]Making the Grade 路面修整(DP)

    传送门 有个结论,每一个位置修改高度后的数,一定是原来在这个数列中出现过的数 因为最终结果要么不递增要么不递减, 不递增的话, 如果x1 >= x2那么不用动,如果x1 < x2,把x1变 ...

  2. BZOJ1592: [Usaco2008 Feb]Making the Grade 路面修整

    n<=2000个数,把它修改成不上升或不下降序列所要改变的数值总共最小是多少yy一下可得最后改成的数值肯定是原数组数值中的某一个感觉一下,相邻两个数如果有冲突要改,那肯定把他们改成两者之一的数才 ...

  3. BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整( dp )

    最优的做法最后路面的高度一定是原来某一路面的高度. dp(x, t) = min{ dp(x - 1, k) } + | H[x] - h(t) | ( 1 <= k <= t ) 表示前 ...

  4. 1592: [Usaco2008 Feb]Making the Grade 路面修整

    1592: [Usaco2008 Feb]Making the Grade 路面修整 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 428  Solv ...

  5. 2014.6.14模拟赛【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整

    Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...

  6. BZOJ1592 POJ3666 [Usaco2008 Feb]Making the Grade 路面修整 左偏树 可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3666 题目传送门 - BZOJ1592 题意概括 整条路被分成了N段,N个整数A_1, ... , ...

  7. 【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整

    FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ...

  8. BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整

    Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...

  9. 【BZOJ 1592】[Usaco2008 Feb]Making the Grade 路面修整 dp优化之转移变状态

    我们感性可证离散(不离散没法做),于是我们就有了状态转移的思路(我们只考虑单不减另一个同理),f[i][j]到了第i块高度为j的最小话费,于是我们就可以发现f[i][j]=Min(f[i-1][k]) ...

随机推荐

  1. RPC00

    https://mp.weixin.qq.com/s?__biz=MjM5ODI5Njc2MA==&mid=2655824821&idx=1&sn=50fa59165aedc8 ...

  2. JS高级学习历程-7

    [面向(基于)对象] 1 创建对象 在php里边,需要先找到一个类别,在通过类创建具体对象 在javascript里边,可以直接创建具体对象,后期可以再给对象丰富许多属性或方法. 1. 字面量方式创建 ...

  3. Leetcode:环形链表2

    题目 给定一个链表,返回链表开始入环的第一个节点. 如果链表无环,则返回 null. 解答 这道题真的很巧妙,首先我们有了环形链表1这道题的铺垫,就能方便的判断有无环了,但是题目要求我们找到环形链表的 ...

  4. [软件工程基础]2017.11.06 第十次 Scrum 会议

    具体事项 项目交接燃尽图 每人工作内容 成员 已完成的工作 计划完成的工作 工作中遇到的困难 游心 #62 调试生成报告代码:#60 整理物理网站上的实验流程:#71 撰写报告生成搭建文档: 李煦通 ...

  5. C.One Piece

    链接:https://ac.nowcoder.com/acm/contest/908/C 题意: Luffy once saw a particularly delicious food, but h ...

  6. GPIO的翻转操作方法

    STM32在进行IO翻转操作的时候可以使用以下方法:以PE.5为例 GPIO_WriteBit(GPIOE,GPIO_Pin_5,(BitAction)(1-(GPIO_ReadOutputDataB ...

  7. 如何更改Android的默认虚拟机地址(Android virtual driver路径设置)

    1.将其他目录下的.android复制到C:\Documents and Settings\Administrator路径下(具体的用户名看自己的).然后进入.android\avd打开avd.ini ...

  8. [转]Todd.log - a place to keep my thoughts on programming 分布式架构中的幂等性

    Todd.log - a place to keep my thoughts on programming 理解HTTP幂等性 基于HTTP协议的Web API是时下最为流行的一种分布式服务提供方式. ...

  9. Spring事务的5种隔离级别

    概述:isolation设定事务的隔离级别,事务管理器根据它来控制另外一个事务可以看到本事务内的哪些数据. 定义的5个不同的事务隔离级别: DEFAULT:默认的隔离级别,使用数据库默认的事务隔离级别 ...

  10. log4cxx安装使用

    log4cxx安装使用 log4cxx现在是apache的一个项目,用来记录日志.看名字就知道,是给c++使用的. 环境(在以下2个环境中进行验证测试): gcc (Ubuntu 4.8.4-2ubu ...