贪心的经典套路:替换思想;有点抽象

Description

FJ打算好好修一下农场中某条凹凸不平的土路。按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也
就是说,高度上升与高度下降的路段不能同时出现在修好的路中。 整条路被分成了N段,N个整数A_1, ... , A_N 
(1 <= N <= 2,000)依次描述了每一段路的高度(0 <= A_i <= 1,000,000,000)。FJ希望找到一个恰好含N个元素的
不上升或不下降序列B_1, ... , B_N,作为修过的路中每个路段的高度。由于将每一段路垫高或挖低一个单位的花
费相同,修路的总支出可以表示为: |A_1 - B_1| + |A_2 - B_2| + ... + |A_N - B_N| 请你计算一下,FJ在这
项工程上的最小支出是多少。FJ向你保证,这个支出不会超过2^31-1。

Input

* 第1行: 输入1个整数:N 
* 第2..N+1行: 第i+1行为1个整数:A_i

题目分析

朴素的$O(n^2)dp$

注意到n比较小而ai非常大;但是第一眼看上去好像不能离散化。

发现在补全路面过程前后,是不会新多出某种路面高度的。可以理解为,既然已经变成单调的序列,那就没有必要再改变任何高度了。

于是可以离散化高度,$f[i][j]$表示$i$位置高度为$第j种高度$的最小代价。

神奇的$O(nlogn)贪心$

做法来源:题解 P2893 【[USACO08FEB]修路Making the Grade】

发现我们只关心代价而不关心每个位置究竟是增还是减,那么这里就涉及到了贪心中的一类比较抽象的“替换”思想。

形象地说就是对于同一个代价,它既可以让高的变低;也可以让低的变高。“替换”正是利用了这一点的特性。

 #include<bits/stdc++.h>
const int maxn = ;
const int INF = ; int n,a[maxn],ans,cnt;
std::priority_queue<int> q; int read()
{
char ch = getchar();
int num = , fl = ;
for (; !isdigit(ch); ch=getchar())
if (ch=='-') fl = -;
for (; isdigit(ch); ch=getchar())
num = (num<<)+(num<<)+ch-;
return num*fl;
}
void clears(std::priority_queue<int> &q)
{
std::priority_queue<int> emt;
std::swap(emt, q);
}
int main()
{
n = read(), ans = INF, cnt = ;
for (int i=; i<=n; i++) a[i] = read();
for (int i=; i<=n; i++)
{
q.push(a[i]);
if (q.top() > a[i]){
cnt += q.top()-a[i], q.pop(), q.push(a[i]);
}
}
ans = cnt, clears(q), cnt = ;
std::reverse(a+, a+n+);
for (int i=; i<=n; i++)
{
q.push(a[i]);
if (q.top() > a[i]){
cnt += q.top()-a[i], q.pop(), q.push(a[i]);
}
}
ans = std::min(ans, cnt);
printf("%d\n",ans);
return ;
}

END

【贪心】bzoj1592: [Usaco2008 Feb]Making the Grade 路面修整的更多相关文章

  1. [BZOJ1592] [Usaco2008 Feb]Making the Grade 路面修整(DP)

    传送门 有个结论,每一个位置修改高度后的数,一定是原来在这个数列中出现过的数 因为最终结果要么不递增要么不递减, 不递增的话, 如果x1 >= x2那么不用动,如果x1 < x2,把x1变 ...

  2. BZOJ1592: [Usaco2008 Feb]Making the Grade 路面修整

    n<=2000个数,把它修改成不上升或不下降序列所要改变的数值总共最小是多少yy一下可得最后改成的数值肯定是原数组数值中的某一个感觉一下,相邻两个数如果有冲突要改,那肯定把他们改成两者之一的数才 ...

  3. BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整( dp )

    最优的做法最后路面的高度一定是原来某一路面的高度. dp(x, t) = min{ dp(x - 1, k) } + | H[x] - h(t) | ( 1 <= k <= t ) 表示前 ...

  4. 1592: [Usaco2008 Feb]Making the Grade 路面修整

    1592: [Usaco2008 Feb]Making the Grade 路面修整 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 428  Solv ...

  5. 2014.6.14模拟赛【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整

    Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...

  6. BZOJ1592 POJ3666 [Usaco2008 Feb]Making the Grade 路面修整 左偏树 可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3666 题目传送门 - BZOJ1592 题意概括 整条路被分成了N段,N个整数A_1, ... , ...

  7. 【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整

    FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ...

  8. BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整

    Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...

  9. 【BZOJ 1592】[Usaco2008 Feb]Making the Grade 路面修整 dp优化之转移变状态

    我们感性可证离散(不离散没法做),于是我们就有了状态转移的思路(我们只考虑单不减另一个同理),f[i][j]到了第i块高度为j的最小话费,于是我们就可以发现f[i][j]=Min(f[i-1][k]) ...

随机推荐

  1. 第七篇 .NET高级技术之关于相等 Equals

    查看判断两个对象是否是同一个对象要用:object.ReferenceEquals(); 因为“==”默认值是比较两个对象是不是同一个对象.所以有时候两个对象的内容相等,但是比较后还是false. O ...

  2. JS中substr与substring的区别

    js中substr和substring都是截取字符串中子串,非常相近,可以有一个或两个参数. 语法:substr(start [,length]) 第一个字符的索引是0,start必选 length可 ...

  3. Python-10-条件和条件语句

    num = int(input('Enter a number: ')) if num > 0:     print('The number is positive') elif num < ...

  4. java preparement

    1.建立链接 Connection conn = getDataSource().getConnection(); PreparedStatement ps = null; 2不自动 Commit 不 ...

  5. csrf攻击实例

    CSRF 攻击可以在受害者毫不知情的情况下以受害者名义伪造请求发送给受攻击站点,从而在并未授权的情况下执行在权限保护之下的操作.比如说,受害者 Bob 在银行有一笔存款,通过对银行的网站发送请求 ht ...

  6. windows下指定端口号起步memcached

    双击.exe启动的话,默认启动的端口是11211 ,要指定端口的话加 -p + 端口号,如: E:\tools\memcached-1.4.5-win32>memcached-1.4.5.exe ...

  7. jquery的$().each和$.each的区别

    在jquery中,遍历对象和数组,经常会用到$().each和$.each(),两个方法.两个方法是有区别的,从而这两个方法在针对不同的操作上,显示了各自的特点. $().each,对于这个方法,在d ...

  8. 简单ui

    UI继承 jQuery 简易使用特性,提供高度抽象接口,短期改善网站易用性. jquery UI 是一个建立在 jQuery JavaScript 库上的小部件和交互库,您可以使用它创建高度交互的 W ...

  9. 第12届D2前端技术论坛

    第12届D2前端技术论坛 最近参加了阿里的D2前端技术论坛,听了一天的报告,收获良多,下面对几场报告做一个记录. 自己选择听的主线也是从: 实践应用 -> 管理 -> 性能 -> 新 ...

  10. 在CentOS上源码安装Nginx

    总步骤: wget http://nginx.org/download/nginx-1.10.1.tar.gz tar -xvf nginx-1.10.1.tar.gz cd nginx-1.10.1 ...