tensorflow 线性回归解决 iris 2分类
# Combining Everything Together
#----------------------------------
# This file will perform binary classification on the
# iris dataset. We will only predict if a flower is
# I.setosa or not.
#
# We will create a simple binary classifier by creating a line
# and running everything through a sigmoid to get a binary predictor.
# The two features we will use are pedal length and pedal width.
#
# We will use batch training, but this can be easily
# adapted to stochastic training. import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph() # Load the iris data
# iris.target = {0, 1, 2}, where '0' is setosa
# iris.data ~ [sepal.width, sepal.length, pedal.width, pedal.length]
iris = datasets.load_iris()
binary_target = np.array([1. if x==0 else 0. for x in iris.target])
iris_2d = np.array([[x[2], x[3]] for x in iris.data]) # Declare batch size
batch_size = 20 # Create graph
sess = tf.Session() # Declare placeholders
x1_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
x2_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) # Create variables A and b (0 = x1 - A*x2 + b)
A = tf.Variable(tf.random_normal(shape=[1, 1]))
b = tf.Variable(tf.random_normal(shape=[1, 1])) # Add model to graph:
# x1 - A*x2 + b
my_mult = tf.matmul(x2_data, A)
my_add = tf.add(my_mult, b)
my_output = tf.subtract(x1_data, my_add) # Add classification loss (cross entropy)
xentropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=my_output, labels=y_target) # Create Optimizer
my_opt = tf.train.GradientDescentOptimizer(0.05)
train_step = my_opt.minimize(xentropy) # Initialize variables
init = tf.global_variables_initializer()
sess.run(init) # Run Loop
for i in range(1000):
rand_index = np.random.choice(len(iris_2d), size=batch_size)
#rand_x = np.transpose([iris_2d[rand_index]])
rand_x = iris_2d[rand_index]
rand_x1 = np.array([[x[0]] for x in rand_x])
rand_x2 = np.array([[x[1]] for x in rand_x])
#rand_y = np.transpose([binary_target[rand_index]])
rand_y = np.array([[y] for y in binary_target[rand_index]])
sess.run(train_step, feed_dict={x1_data: rand_x1, x2_data: rand_x2, y_target: rand_y})
if (i+1)%200==0:
print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)) + ', b = ' + str(sess.run(b))) # Visualize Results
# Pull out slope/intercept
[[slope]] = sess.run(A)
[[intercept]] = sess.run(b) # Create fitted line
x = np.linspace(0, 3, num=50)
ablineValues = []
for i in x:
ablineValues.append(slope*i+intercept) # Plot the fitted line over the data
setosa_x = [a[1] for i,a in enumerate(iris_2d) if binary_target[i]==1]
setosa_y = [a[0] for i,a in enumerate(iris_2d) if binary_target[i]==1]
non_setosa_x = [a[1] for i,a in enumerate(iris_2d) if binary_target[i]==0]
non_setosa_y = [a[0] for i,a in enumerate(iris_2d) if binary_target[i]==0]
plt.plot(setosa_x, setosa_y, 'rx', ms=10, mew=2, label='setosa')
plt.plot(non_setosa_x, non_setosa_y, 'ro', label='Non-setosa')
plt.plot(x, ablineValues, 'b-')
plt.xlim([0.0, 2.7])
plt.ylim([0.0, 7.1])
plt.suptitle('Linear Separator For I.setosa', fontsize=20)
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.legend(loc='lower right')
plt.show()
tensorflow 线性回归解决 iris 2分类的更多相关文章
- tensorflow实现svm iris二分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)
iris二分类 # Linear Support Vector Machine: Soft Margin # ---------------------------------- # # This f ...
- Chinese-Text-Classification,用卷积神经网络基于 Tensorflow 实现的中文文本分类。
用卷积神经网络基于 Tensorflow 实现的中文文本分类 项目地址: https://github.com/fendouai/Chinese-Text-Classification 欢迎提问:ht ...
- 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践
https://zhuanlan.zhihu.com/p/25928551 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类 ...
- TensorFlow基础笔记(3) cifar10 分类学习
TensorFlow基础笔记(3) cifar10 分类学习 CIFAR-10 is a common benchmark in machine learning for image recognit ...
- [转] 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践
转自知乎上看到的一篇很棒的文章:用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文 ...
- 在 Flutter 中使用 TensorFlow Lite 插件实现文字分类
如果您希望能有一种简单.高效且灵活的方式把 TensorFlow 模型集成到 Flutter 应用里,那请您一定不要错过我们今天介绍的这个全新插件 tflite_flutter.这个插件的开发者是 G ...
- TensorFlow实现多层感知机MINIST分类
TensorFlow实现多层感知机MINIST分类 TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度.使用梯度自动更新用变量定义的张量.本文将使用 Tenso ...
- tensorflow实现svm多分类 iris 3分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)
# Multi-class (Nonlinear) SVM Example # # This function wll illustrate how to # implement the gaussi ...
- 用决策树(CART)解决iris分类问题
首先先看Iris数据集 Sepal.Length--花萼长度 Sepal.Width--花萼宽度 Petal.Length--花瓣长度 Petal.Width--花瓣宽度 通过上述4中属性可以预测花卉 ...
随机推荐
- Android自定义xml解析
<?xml version="1.0" encoding="utf-8"?> <resources> <Users> < ...
- xamarin.IOS App闪退日志----crash
一.查找日志文件位置:通过xcode/windows/device/你的IPhone/crash 二.拿到日志可以直接查看,但是日志记录太乱看不懂,需要转换处理,查找.DSYM文件,文件位置:/Use ...
- mysql_config_editor使用简介
原文 : http://blog.itpub.net/29773961/viewspace-1817640/ ----------------------------------------- ...
- 使用正則表達式对URL进行解析
对URL进行解析,一般用到的參数有: 1.协议 如http,https 2.域名或IP 3.port号,如7001,8080 4.Web上下文 5.URI.请求资源地址 6.请求參数 一个URL演示样 ...
- background-attachment
CreateTime--2017年9月28日10:58:58 Author:Marydon background-attachment 1.定义 定义背景图片随滚动轴的移动方式(设置背景图像是否固 ...
- 【Java编程】Java在dos窗体编译与运行的批处理
近期在Java编程过程中,常常使用到dos窗体对程序进行编译与执行. 可是不方便之处在于每次都要输入命令进入将要编译的程序的文件夹(事实上也有简单的方法,在文章末尾给出).于是编写了一个配置文件,能够 ...
- javascript变量初始化位置
变量在之前<script type="text/javascript"></script>(或引用的js文件)中初始化,可以正常访问. 运行程序:弹出123 ...
- Android开发之裁切(拍照+相冊)图像并设置头像小结
先看效果: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5 ...
- c结构体里的数组与指针
/* 訪问成员数组名事实上得到的是数组的相对地址.而訪问成员指针事实上是相对地址里的内容 */ struct buf_str { int length; char buf[0]; }; struct ...
- Hive调优实战
Hive是将符合SQL语法的字符串解析生成可以在Hadoop上执行的MapReduce的工具. 使用Hive尽量按照分布式计算的一些特点来设计sql,和传统关系型数据库有区别,所以需要去掉原有关系型数 ...