Consider nn initial strings of lower case letters, where no initial string is a prefix of any other initial string. Now, consider choosing kk of the strings (no string more than once), and concatenating them together. You can make this many such composite strings:

\displaystyle n \times (n - 1) \times (n - 2) \times . . . \times (n - k + 1)n×(n−1)×(n−2)×...×(n−k+1)

Consider sorting all of the composite strings you can get via this process in alphabetical order. You are given a test composite string, which is guaranteed to belong on this list. Find the position of this test composite string in the alphabetized list of all composite strings, modulo 10^9 + 7109+7. The first composite string in the list is at position 11.

Input Format

Each input will consist of a single test case.

Note that your program may be run multiple times on different inputs.

Each test case will begin with a line with two integers, first nn and then k (1 \le k \le n)k(1≤k≤n), where nn is the number of initial strings, and kk is the number of initial strings you choose to form composite strings. The upper bounds of nnand kk are limited by the constraints on the strings, in the following paragraphs.

Each of the next nn lines will contain a string, which will consist of one or more lower case letters a..za..z. These are the nn initial strings. It is guaranteed that none of the initial strings will be a prefix of any other of the initial strings.

Finally, the last line will contain another string, consisting of only lower case letters a..za..z. This is the test composite string, the position of which in the sorted list you must find. This test composite string is guaranteed to be a concatenation of kk unique initial strings.

The sum of the lengths of all input strings, including the test string, will not exceed 10^6106 letters.

Output Format

Output a single integer, which is the position in the list of sorted composite strings where the test composite string occurs. Output this number modulo 10^9 + 7109+7.

样例输入1

5 3
a
b
c
d
e
cad

样例输出1

26

样例输入2

8 8
font
lewin
darko
deon
vanb
johnb
chuckr
tgr
deonjohnbdarkotgrvanbchuckrfontlewin

样例输出2

12451

题目来源

The North American Invitational Programming Contest 2018

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <string>
#include <deque>
using namespace std;
#define ll long long
#define N 1000009
#define gep(i,a,b) for(int i=a;i<=b;i++)
#define gepp(i,a,b) for(int i=a;i>=b;i--)
#define gep1(i,a,b) for(ll i=a;i<=b;i++)
#define gepp1(i,a,b) for(ll i=a;i>=b;i--)
#define mem(a,b) memset(a,b,sizeof(a))
#define mod 1000000007
#define lowbit(x) x&(-x)
ll n,m;
ll pos,dfn;
ll tree[N][],c[N],a[N];
char s[N];
ll vis[N];
ll fac[N] = {, }, inv[N] = {, }, f[N] = {, };
void init(){
gep(i,,N){
fac[i]=fac[i-]*i%mod;
f[i]=(mod-mod/i)*f[mod%i]%mod;
inv[i]=inv[i-]*f[i]%mod;
}
}
ll A(ll n,ll m){
if(n<m) return ;
return fac[n]*inv[n-m]%mod;//一开始*写成了%
}
void update(ll i,ll num){
while(i<=n){
c[i]+=num;
i+=lowbit(i);
}
}
ll getsum(ll i){
ll sum=;
while(i>){
sum+=c[i];
i-=lowbit(i);
}
return sum;
}
void dfs(int u){
if(vis[u]) vis[u]=++dfn;//排序
gep(i,,){
if(tree[u][i]) dfs(tree[u][i]);
}
}
int main()
{
init();
scanf("%lld%lld",&n,&m);
pos=;
gep1(i,,n){
scanf("%s",s);
ll l=strlen(s)-;
ll x=;
//建字典树
gep1(j,,l){
if(!tree[x][s[j]-'a']) tree[x][s[j]-'a']=++pos;
x=tree[x][s[j]-'a'];
}
vis[x]=;//只标记最后的元素
}
dfn=;
dfs();
scanf("%s",s);
ll l=strlen(s)-;
ll x=,cnt=;
gep1(i,,l){
x=tree[x][s[i]-'a'];
if(vis[x]) a[++cnt]=vis[x],x=;//找到每个的标记,每次还要x==0
}
gep1(i,,n) update(i,);
ll ans=;
gep1(i,,cnt){
update(a[i],-);
ll ans1=getsum(a[i]);//前面还可以再用的
ll ans2=A(n-i,m-i);
ans=(ans+ans1*ans2%mod)%mod;
}
printf("%lld\n",ans);
return ;
}

The North American Invitational Programming Contest 2018 E. Prefix Free Code的更多相关文章

  1. The North American Invitational Programming Contest 2018 D. Missing Gnomes

    A family of nn gnomes likes to line up for a group picture. Each gnome can be uniquely identified by ...

  2. The North American Invitational Programming Contest 2018 H. Recovery

    Consider an n \times mn×m matrix of ones and zeros. For example, this 4 \times 44×4: \displaystyle \ ...

  3. North American Invitational Programming Contest 2018

    A. Cut it Out! 枚举第一刀,那么之后每切一刀都会将原问题划分成两个子问题. 考虑DP,设$f[l][r]$表示$l$点顺时针一直到$r$点还未切割的最小代价,预处理出每条边的代价转移即可 ...

  4. The North American Invitational Programming Contest 2017 题目

    NAIPC 2017 Yin and Yang Stones 75.39% 1000ms 262144K   A mysterious circular arrangement of black st ...

  5. North American Invitational Programming Contest (NAIPC) 2017

    (待补) A. Pieces of Parentheses 将括号处理完成后排序,方式参加下面的博客.然后做一遍背包即可. 2018 Multi-University Training Contest ...

  6. North American Invitational Programming Contest (NAIPC) 2016

    (待补) A. Fancy Antiques 爆搜. B. Alternative Bracket Notation C. Greetings! D. Programming Team 0/1分数规划 ...

  7. AtCoder SoundHound Inc. Programming Contest 2018 E + Graph (soundhound2018_summer_qual_e)

    原文链接https://www.cnblogs.com/zhouzhendong/p/AtCoder-SoundHound-Inc-Programming-Contest-2018-E.html 题目 ...

  8. ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2018) Syria, Lattakia, Tishreen University, April, 30, 2018

    ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2018) Syr ...

  9. German Collegiate Programming Contest 2018​ B. Battle Royale

    Battle Royale games are the current trend in video games and Gamers Concealed Punching Circles (GCPC ...

随机推荐

  1. 洛谷1052(路径压缩后简单dp)

    同POJ3744写法都是一样的. 距离太长无意义可以压缩,注意不是随便压的,想一想可以跟%T发生关系. #include <cstdio> #include <cctype> ...

  2. Codeforces Round #402 (Div. 2) A

    Description In Berland each high school student is characterized by academic performance — integer v ...

  3. React项目搭建基于Karma的CI环境

    简介 在浏览Github的时候是否经常看到这样的CI图标呢? 本文即为介绍如何为基于React的项目配置CircleCI的自动化测试环境 源码在此 本地实现 项目依赖如下: "devDepe ...

  4. div 绝对定位

    div绝对居下 .Phone2title{ width:%; height:30px; line-height:30px; /*text-align:left;*/ /*background-colo ...

  5. Java基础之面向对象

    面向对象 1.面向对象思想:     (1)概述:面向对象是相对于面向过程而言的,面向过程强调的是功能,面向对象强调的是将功能封装进对象,强调具备功能的对象:     (2)思想特点:        ...

  6. 【javascript】2017-9-12 腾讯笔试小Q升序算法

    刚做完笔试,腾讯笔试系统真的不友好,作为一个前端,我只会用js写编程题,然而,然而腾讯笔试系统连js输入函数都没给,还不准跳出页面,那个调试结果一直显示错误,我一直找不到错误在哪,心累. 只做了一道笔 ...

  7. 一个具体的例子学习Java volatile关键字

    相信大多数Java程序员都学习过volatile这个关键字的用法.百度百科上对volatile的定义: volatile是一个类型修饰符(type specifier),被设计用来修饰被不同线程访问和 ...

  8. iOS图片目录批量复制到android图片目录

    复制shell脚本 #!/bin/bash for i in `ls` do for imgname in `ls $i | grep '^WM.*'` do echo $imgname cp $i/ ...

  9. Ace 在HTML中使用方法

    <!DOCTYPE html> <html> <head> <title>Demo of ACE Editor</title> <!- ...

  10. winform中让显示的图片覆盖到父窗体保持父窗体的不可选中的状态,且任务栏中不会显示子窗体的任务选项

    要求:为父窗体添加一个类似于加载等待的功能,当窗体点击备份时弹出且覆盖掉窗体 问题一产生:当为弹窗添加控件时,form.show();导致窗体卡死,控件变得透明化; 问题一分析:当窗体show();之 ...