题目链接 Multipliers

题意很明确。

很显然答案可以表示成X ^ EXP % MOD

首先我们令N为输入的n个数的乘积。并且设N = (P1 ^ C1) * (P2 ^ C2) * ... * (Pk * Ck),Pi(1 <= i <= k)为质数。

1、N为完全平方数。

这个时候X = N的算术平方根,EXP = (C1 +1) * (C2 + 1) * ... * (Ck + 1), MOD = 1e9 + 7;

2、N不是完全平方数。

这个时候X = N, EXP = (C1 +1) * (C2 + 1) * ... * (Ck + 1) / 2, MOD = 1e9 + 7;

考虑到EXP可能非常大,这里我用了指数循环节公式:

 a^b%c = a^( b%phic+phic )%c phix为欧拉函数。

而在题中c等于1e9 + 7为质数,那么phic = 1e9 + 6。

剩下的事情就很简单了。

 #include <bits/stdc++.h>

 using namespace std;

 #define rep(i, a, b)  for(int i(a); i <= (b); ++i)
#define LL long long const int N = ;
const LL mod = ; int prime[N];
int c[N], d[N];
bool fl;
int cnt = ;
int n, x;
int squ; map <int, int> mp; inline LL Pow(LL a, LL b, LL Mod){
LL ret();
for (; b; b >>= , (a *= a) %= Mod)
if (b & ) (ret *= a) %= Mod;
return ret;
} int main(){ rep(i, , ){
fl = true;
rep(j, , (int)sqrt(i + 0.5)) if (i % j == ){
fl = false;
break;
}
if (fl){
prime[++cnt] = i;
mp[prime[cnt]] = cnt;
}
} memset(c, , sizeof c); scanf("%d", &n);
rep(i, , n){
scanf("%d", &x);
++c[mp[x]];
} squ = ;
rep(i, , cnt)
if (c[i]){
if (c[i] & ){
squ = ;
break;
}
} LL exp = ;
if (squ){
LL ret = ;
rep(i, , cnt) d[i] = c[i] / ;
rep(i, , cnt) ++c[i];
rep(i, , cnt) (exp *= c[i]) %= (mod - ); rep(i, , cnt) if (d[i]) (ret *= Pow(prime[i], d[i], mod)) %= mod; printf("%lld\n", Pow(ret, exp + mod - , mod));
} else
{
rep(i, , cnt) d[i] = c[i] + ;
rep(i, , cnt) if (d[i] % == ){
d[i] >>= ;
break;
} LL exp = ;
rep(i, , cnt) (exp *= d[i]) %= (mod - );
LL ret = ;
rep(i, , cnt) if (c[i]) (ret *= Pow(prime[i], c[i], mod)) %= mod; printf("%lld\n", Pow(ret, exp + mod - , mod));
} return ; }

Codeforces 615D Multipliers (数论)的更多相关文章

  1. CodeForces - 615D Multipliers(数论)

    http://codeforces.com/problemset/problem/615/D 题意 给出m个质因子,组成一个数n.问n的约数的乘积是多少,输出mod 1e+7的结果. 分析 从输入我们 ...

  2. codeforces 615D - Multipliers

    Multipliers 题意:给定一个2e5范围内的整数m,之后输入m个2e5内的素数(当然可以重复了),问把这些输入的素数全部乘起来所得的数的约数的乘积mod(1e9+7)等于多少? 思路:对题目样 ...

  3. Codeforces Round #338 (Div. 2) D. Multipliers 数论

    D. Multipliers 题目连接: http://codeforces.com/contest/615/problem/D Description Ayrat has number n, rep ...

  4. codeforces 615 D. Multipliers (数论 + 小费马定理 + 素数)

    题目链接: codeforces 615 D. Multipliers 题目描述: 给出n个素数,这n个素数的乘积等于s,问p的所有因子相乘等于多少? 解题思路: 需要求出每一个素数的贡献值,设定在这 ...

  5. 【14.67%】【codeforces 615D】Multipliers

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  6. codeforces 735D Taxes(数论)

    Maximal GCD 题目链接:http://codeforces.com/problemset/problem/735/D ——每天在线,欢迎留言谈论. 题目大意: 给你一个n(2≤n≤2e9) ...

  7. CF 615D Multipliers

    题目:http://codeforces.com/contest/615/problem/D 求n的约数乘积. 设d(x)为x的约数个数,x=p1^a1+p2^a2+……+pn^an,f(x)为x的约 ...

  8. Codeforces 1106F(数论)

    要点 998244353的原根g = 3,意味着对于任意\[1 <= x,y<p\]\[x\neq\ y\]\[g^x\%p\neq\ g^y\%p\]因此可以有构造序列\(q(a)与a一 ...

  9. Codeforces 858A. k-rounding 数论

    题目: 题意:输入n和k,找到一个最小的数,满足末尾有至少k个0和是n的倍数. 最小的情况 ans = n,最大的情况 ans = n*pow(10,k). 令 k = pow(10,k); 我们发现 ...

随机推荐

  1. [USACO]奶牛抗议(DP+树状数组+离散化)

    Description 约翰家的N头奶牛聚集在一起,排成一列,正在进行一项抗议活动.第i头奶牛的理智度 为Ai,Ai可能是负数.约翰希望奶牛在抗议时保持理性,为此,他打算将所有的奶牛隔离成 若干个小组 ...

  2. RF、GBDT、XGBOOST常见面试算法整理

    1.  RF(随机森林)与GBDT之间的区别 相同点: 1)都是由多棵树组成的 2)最终的结果都是由多棵树一起决定 不同点: 1)  组成随机森林的树可以是分类树也可以是回归树,而GBDT只由回归树组 ...

  3. 手把手教你启用RemoteFX以及Hyper-V GPU卸载

    [TechTarget中国原创] 微软的RemoteFX特性可以帮助改善虚拟机图形密集型应用工作负载的性能. 服务器虚拟化已经成熟到大多数工作负载都能够在虚拟机内运行的程度.毫无疑问,与其他工作负载相 ...

  4. Bat windows 批处理 常用命令

    设置全屏: To make all bat files fullscreen: reg add HKCU\Console\ /v Fullscreen /t REG_DWORD /d /f To ma ...

  5. CSU-2220 Godsend

    题目链接 http://acm.csu.edu.cn:20080/csuoj/problemset/problem?pid=2220 题目 Description Leha somehow found ...

  6. 我爱学 Python 之文件

    读取文件 假设你已经在某个文件夹下创建了 "test.txt" 文件,且里面有一些内容,那你在当前位置输入 Python3,进入到交互模式,然后执行下面的操作: >>& ...

  7. [oldboy-django][2深入django]xss攻击 + csrf

    1 xss攻击 xss攻击(跨站脚本攻击,用户页面提交数据来盗取cookie) - 慎用safe, 和mark_safe -- 如果要用,必须要过滤 - 定义: 用户提交内容,在页面展示用html显示 ...

  8. 【转】netstat 查看端口占用情况

    netstat用来查看系统当前系统网络状态信息,包括端口,连接情况等,常用方式如下: netstat -atunlp,各参数含义如下: -t : 指明显示TCP端口 -u : 指明显示UDP端口 -l ...

  9. BZOJ 3625 [Codeforces Round #250]小朋友和二叉树 ——NTT 多项式求逆 多项式开根

    生成函数又有奇妙的性质. $F(x)=C(x)*F(x)*F(x)+1$ 然后大力解方程,得到一个带根号的式子. 多项式开根有解只与常数项有关. 发现两个解只有一个是成立的. 然后多项式开根.求逆. ...

  10. SGU 乱搞日志

    SGU 100 A+B :太神不会 SGU 101 Domino: 题目大意:有N张骨牌,两张骨牌有两面有0到6的数字,能相连当且仅当前后数字相同,问能否有将N张骨牌连接的方案?思路:裸的欧拉回路,注 ...