Number Sequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 187893    Accepted Submission(s): 46820

Problem Description
A number sequence is defined as follows:

f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.

Given A, B, and n, you are to calculate the value of f(n).

 
Input
The
input consists of multiple test cases. Each test case contains 3
integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n
<= 100,000,000). Three zeros signal the end of input and this test
case is not to be processed.
 
Output
For each test case, print the value of f(n) on a single line.
 
Sample Input
1 1 3
1 2 10
0 0 0
 
Sample Output
2
5
 
Author
CHEN, Shunbao
 
Source
 【分析】:
【代码】:

#include <bits/stdc++.h>
using namespace std; typedef long long LL;
const int MOD = ;
typedef vector<LL> vec;
typedef vector<vec> mat;
LL n; mat mul(mat &A,mat &B)
{
mat C(A.size(),vec(B[].size()));
for( int i = ; i < A.size(); i++ ){
for( int j = ; j < B[].size();j++ ){
for( int k = ; k < B.size();k++ ){
C[i][j] = (C[i][j] + A[i][k] * B[k][j]);
C[i][j] %= MOD;
}
}
}
return C;
}
mat pow(mat A,LL n)
{
mat B(A.size(),vec(A.size()));
for( int i = ; i < A.size(); i++ ){
B[i][i] = ;
}
while(n > ){
if(n & )B = mul(B,A);
A = mul(A,A);
n >>= ;
}
return B;
}
void solve(LL a,LL b)
{
mat A(,vec());
A[][] = a;
A[][] = b;
A[][] = ;
A[][] = ;
A = pow(A,n-);
printf("%lld\n",(A[][]+A[][])%);
}
int main()
{
LL a,b;
while(~scanf("%lld%lld%lld",&a,&b,&n),a)
solve(a,b);
return ;
}

矩阵快速幂

HDU 1005 Number Sequence【斐波那契数列/循环节找规律/矩阵快速幂/求(A * f(n - 1) + B * f(n - 2)) mod 7】的更多相关文章

  1. HDOJ 4549 M斐波那契数列 费马小定理+矩阵高速幂

    MF( i ) = a ^ fib( i-1 ) * b ^ fib ( i )   ( i>=3) mod 1000000007 是质数 , 依据费马小定理  a^phi( p ) = 1 ( ...

  2. Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)

    Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...

  3. Computational Complexity of Fibonacci Sequence / 斐波那契数列的时空复杂度

    Fibonacci Sequence 维基百科 \(F(n) = F(n-1)+F(n-2)\),其中 \(F(0)=0, F(1)=1\),即该数列由 0 和 1 开始,之后的数字由相邻的前两项相加 ...

  4. 51nod--1242 斐波那契数列第N项 (矩阵乘法优化)

    题目: 1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) ...

  5. (hdu 6030) Happy Necklace 找规律+矩阵快速幂

    题目链接 :http://acm.hdu.edu.cn/showproblem.php?pid=6030 Problem Description Little Q wants to buy a nec ...

  6. UVA10689 Yet another Number Sequence —— 斐波那契、矩阵快速幂

    题目链接:https://vjudge.net/problem/UVA-10689 题解: 代码如下: #include <iostream> #include <cstdio> ...

  7. ***1133. Fibonacci Sequence(斐波那契数列,二分,数论)

    1133. Fibonacci Sequence Time limit: 1.0 secondMemory limit: 64 MB is an infinite sequence of intege ...

  8. 2017ACM暑期多校联合训练 - Team 2 1006 HDU 6050 Funny Function (找规律 矩阵快速幂)

    题目链接 Problem Description Function Fx,ysatisfies: For given integers N and M,calculate Fm,1 modulo 1e ...

  9. HDU 5793 A Boring Question ——(找规律,快速幂 + 求逆元)

    参考博客:http://www.cnblogs.com/Sunshine-tcf/p/5737627.html. 说实话,官方博客的推导公式看不懂...只能按照别人一样打表找规律了...但是打表以后其 ...

随机推荐

  1. BFS:胜利大逃亡

    解题心得: 1.水题,主要主意好一个点就好. 2.注意x.y.z坐标的选取就好. 题目: Ignatius被魔王抓走了,有一天魔王出差去了,这可是Ignatius逃亡的好机会. 魔王住在一个城堡里,城 ...

  2. Android百度地图开发 百度地图得到当前位置

    1.申请key 2.复制jar,以及.so .注意要Libs目录右键build path -> use as source folder(这是一个坑) 3. AndroidMainFast.xm ...

  3. 组装需要的json数据格式

    在实际项目中有时候会遇到一些有特殊要求的控件,比如easyui-combogrid,加载的并不是常见的json格式,这里我遇到过需要加载类似省市县这种三级数据格式.最后也是从别人的博客中学到的如何组装 ...

  4. 【Luogu P1637】 三元上升子序列

    对于每个数$a_i$,易得它对答案的贡献为 它左边比它小的数的个数$\times$它右边比它大的数的个数. 可以离散化后再处理也可以使用动态开点的线段树. 我使用了动态开点的线段树,只有需要用到这个节 ...

  5. Bug的类型

    美国计算机科学家.图灵奖获得者詹姆斯·尼古拉·格雷(Jim Gray),在他的著名的论文“Why do computers stop and what can be done about it?”中首 ...

  6. ogre3D学习基础2 -- 顶点程序与片断程序

    三.顶点程序与片断程序 顶点或者片断程序定义可以被多个材质使用,唯一的前提条件是必须在引用它之前在材质的渲染通路部分中定义. 一个低级顶点程序示例如下: vertex_program myVertex ...

  7. 详细的Windows下安装 binwalk

    1. https://github.com/ReFirmLabs/binwalk到这里下载binwalk,下载后解压. 2. 找到下载后的文件夹, 在这里要进行安装步骤,一边按着shift,一边按着鼠 ...

  8. 关于C++ STL标准库中map 的多元素应用

    map的特性是,所有的元素会根据键值自动排序.map的所有元素都是pair,同时拥有实值(value)和键值(key).pair的第一个元素被视为键值,第二个被视为实质piar 的定义 templat ...

  9. java面试需要准备什么呢?c++可以看看

    作者:Mingche Su链接:https://zhuanlan.zhihu.com/p/20545626来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 语言知识点:以 ...

  10. 构建乘积数组--java

    题目:给定一个数组A[0,1,...,n-1],请构建一个数组B[0,1,...,n-1],其中B中的元素B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]*...*A[n-1].不能使 ...