次大公约数就是gcd再除以其最小质因子(如果有的话)。可以发现要求的sgcd 的前身gcd都是a1的约数,所以把a1质因数分解直接做就行了。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=100005;
unordered_map<ll,ll> mmp;
ll gcd(ll x,ll y){ return y?gcd(y,x%y):x;}
int n,c[233],num;
ll a,d[233],now; void dfs(int x,ll y,ll Min){
if(x==num){ mmp[y]=Min?y/Min:-1; return;}
dfs(x+1,y,Min),y*=d[x+1];
if(!Min) Min=d[x+1];
for(int u=1;u<=c[x+1];u++,y*=(ll)d[x+1]) dfs(x+1,y,Min);
} inline void prework(ll x){
for(int i=2;i*(ll)i<=x;i++) if(!(x%i)){
d[++num]=i;
for(;!(x%i);c[num]++,x/=i);
}
if(x!=1) d[++num]=x,c[num]=1; dfs(0,1,0);
} inline void output(){
printf("%lld ",mmp[a]);
for(int i=2;i<=n;i++) scanf("%lld",&now),printf("%lld ",mmp[gcd(a,now)]);
} int main(){
scanf("%d%lld",&n,&a);
prework(a);
output();
return 0;
}

  

[UR #3] 核聚变反应强度的更多相关文章

  1. 【uoj#48】[UR #3]核聚变反应强度 数论

    题目描述 给出一个长度为 $n$ 的数列 $a$ ,求 $a_1$ 分别与 $a_1...a_n$ 的次大公约数.不存在则输出-1. 输入 第一行一个正整数 $n$ . 第二行 $n$ 个用空格隔开的 ...

  2. 【UOJ#48】【UR #3】核聚变反应强度(质因数分解)

    [UOJ#48][UR #3]核聚变反应强度(质因数分解) 题面 UOJ 题解 答案一定是\(gcd\)除掉\(gcd\)的最小质因子. 而\(gcd\)的最小值因子一定是\(a_1\)的质因子. 所 ...

  3. uoj 48 核聚变反应强度 次小公因数

    [UR #3]核聚变反应强度 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/48 Description 著名核 ...

  4. [UOJ #48]【UR #3】核聚变反应强度

    题目大意:给你一串数$a_i$,求$sgcd(a_1,a_i)$,$sgcd(x,y)$表示$x,y$的次大公约数,若没有,则为$-1$ 题解:即求最大公约数的最大约数,把$a_1$分解质因数,求出最 ...

  5. [UOJ48] 核聚变反应强度

    QUQ 思路 求出a1的所有约数,与a1.ai放入同一数组: 求出gcd(a1,ai): 枚举约数,得出ans; 代码实现 #include<cmath> #include<cstd ...

  6. 【UOJ Round #3】

    枚举/二分 C题太神窝看不懂…… 核聚变反应强度 QwQ很容易发现次小的公约数一定是gcd的一个约数,然后……我就傻逼地去每次算出a[1],a[i]的gcd,然后枚举约数……这复杂度……哦呵呵... ...

  7. $2018/8/15 = Day \ \ 1$杂题整理

    \(\mathcal{Morning}\) \(Task1\)高精度\(\times\)高精度 哦呵呵--真是喜闻乐见啊,我发现这一部分比较有意思于是就打算整理下来233.窝萌现在有一个整数\(A = ...

  8. ur c题练习

    ur的c果然sxbk啊 ur5:“三个莫比乌斯反演掷地有声"——摘自v(c)f(z)k(y)语录,无删改 ur2:有根树分治裸题,复杂度玄学$O(n\sqrt{n})$. 首先,转化为统计k ...

  9. JS正则检测密码强度

    今天遇到个需求,使用JS检测密码强度:密码长度最短为8,必须同时包含字母.数字.特殊符号. 代码如下: /*         * 检测密码复杂度         */         function ...

随机推荐

  1. TCP/IP网络编程之多线程服务端的实现(二)

    线程存在的问题和临界区 上一章TCP/IP网络编程之多线程服务端的实现(一)的thread4.c中,我们发现多线程对同一变量进行加减,最后的结果居然不是我们预料之内的.其实,如果多执行几次程序,会发现 ...

  2. PostgreSql基础命令及问题总结

    本章内容: 1.基本命令 基本命令 1.psql -U cdnetworks_beian -d cdnetworks_beian         #-U指定用户,-d指定数据库 2.\l        ...

  3. va_list

    void Log( const TCHAR *pszFormat, ... ) { TCHAR buf[] ; va_list arglist ; try { _tcscpy_s ( buf, , _ ...

  4. AppDOMain(摘录)

    AppDomain是CLR的运行单元,它可以加载Assembly.创建对象以及执行程序. AppDomain是CLR实现 代码隔离 的基本机制. 每一个AppDomain可以单独运行.停止:每个App ...

  5. jsonp的原理及应用

    https://blog.csdn.net/u011897301/article/details/52679486

  6. Halcon17 windows 下载

    Halcon17 windows 下载地址:http://www.211xun.com/download_page_9.html HALCON 17 是一套机器视觉图像处理库,由一千多个算子以及底层的 ...

  7. RESTful-rest_framework视图层-第三篇

    图书管理系统: 实现图书接口的增.删.改.查 方式一:普通的方式 views配置: #Book的增.删.改.查接口 class BookSerializer(serializers.ModelSeri ...

  8. 爬虫:Scrapy2 - 命令行工具

    Scrapy 是通过 scrapy 命令行工具进行控制的. 这里我们称之为 “Scrapy tool” 以用来和子命令进行区分.对于子命令,我们称为 “command” 或者 “Scrapy comm ...

  9. 使用 宝塔面板快速部署Java项目

    环境描述: 服务器系统:CentOS7 64位操作系统 面板版本:宝塔6.9.4 Nginx版本:Nginx 1.16 Tomcat版本:Tomcat7 JDK版本:1.8.0_121 环境部署就不用 ...

  10. 【转】Twitter-Snowflake,64位自增ID算法详解

    Twitter-Snowflake算法产生的背景相当简单,为了满足Twitter每秒上万条消息的请求,每条消息都必须分配一条唯一的id,这些id还需要一些大致的顺序(方便客户端排序),并且在分布式系统 ...