传送门

假设有\(k|{n\choose m}\),因为\(n!\)中质因子\(k\)的次数为\(S(n)=\left\lfloor\frac{n}{k}\right\rfloor+\left\lfloor\frac{n}{k^2}\right\rfloor+...\),而\(m!\)和\((n-m)!\)同理。所以如果\(S(n)>S(m)+S(n-m)\),那么\(k|{n\choose m}\)

不难发现,对于每一个\(k^i\),\(\left\lfloor\frac{n}{k^i}\right\rfloor\geq \left\lfloor\frac{m}{k^i}\right\rfloor+\left\lfloor\frac{n-m}{k^i}\right\rfloor\)。所以只要有一个\(i\)使得\(\left\lfloor\frac{n}{k^i}\right\rfloor>\left\lfloor\frac{m}{k^i}\right\rfloor+\left\lfloor\frac{n-m}{k^i}\right\rfloor\),那么\(S(n)>S(m)+S(n-m)\)

当\(i=1\)的时候,设\(n=ak+b,m=ck+d\),则\(n-m=(a-c)k+b-d\),那么如果\(b-d<0\),\(\left\lfloor\frac{n}{k}\right\rfloor=a,\left\lfloor\frac{m}{k}\right\rfloor+\left\lfloor\frac{n-m}{k}\right\rfloor=c+(a-c-1)=a-1<a\),那么就有\(S(n)>S(m)+S(n-m)\)

同理可得,若\(n\)和\(m\)的\(k\)进制表示下第\(i\)位满足\(n_i<m_i\),那么就有\(S(n)>S(m)+S(n-m)\)

于是现在的问题就是变成了求\(i<n,j<m\)且\(i\)的\(k\)进制表示下有某一位数值比\(j\)小,可以数位dp,这个就不讲了

然后上面的情况下我们没有考虑\(j>i\)的情况,因为如果\(j>i\)那么\(k\)进制下\(i\)肯定有某一位小于\(j\),所以我们对于每个\(i\)算出它会多算的个数,发现就是一个等差数列求和的形式,带公式就好了

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
ll read(){
R ll res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=65,P=1e9+7,inv=500000004;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
int l1,l2,num1[N],num2[N],k,p,ans;
int f[2][2][2][N];ll n,m;
int dfs(int p,int q,int ok,int pos){
if(!pos)return ok;
if(~f[p][q][ok][pos])return f[p][q][ok][pos];
int res=0,lm1=p?k-1:num1[pos],lm2=q?k-1:num2[pos];
fp(i,0,lm1)fp(j,0,lm2)
res=add(res,dfs(p|(i<lm1),q|(j<lm2),ok|(i<j),pos-1));
return f[p][q][ok][pos]=res;
}
void solve(){
n=read(),m=read(),l1=l2=0,m=min(n,m),p=m%P;
memset(f,-1,sizeof(f));
while(n)num1[++l1]=n%k,n/=k;
while(m)num2[++l2]=m%k,m/=k;
while(l2<=l1)num2[++l2]=0;
ans=dfs(0,0,0,l1);
ans=dec(ans,1ll*(p+1)*p%P*inv%P);
printf("%d\n",ans);
}
int main(){
// freopen("testdata.in","r",stdin);
int T=read();k=read();
while(T--)solve();
return 0;
}

uoj#275. 【清华集训2016】组合数问题(数位dp)的更多相关文章

  1. [UOJ#274][清华集训2016]温暖会指引我们前行

    [UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...

  2. UOJ275 [清华集训2016] 组合数问题 【Lucas定理】【数位DP】

    题目分析: 我记得很久以前有人跟我说NOIP2016的题目出了加强版在清华集训中,但这似乎是一道无关的题目? 由于$k$为素数,那么$lucas$定理就可以搬上台面了. 注意到$\binom{i}{j ...

  3. BZOJ 4732 UOJ #268 [清华集训2016]数据交互 (树链剖分、线段树)

    题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=4732 (UOJ) http://uoj.ac/problem/268 题解 ...

  4. [UOJ#276][清华集训2016]汽水[分数规划+点分治]

    题意 给定一棵 \(n\) 个点的树,给定 \(k\) ,求 \(|\frac{\sum w(路径长度)}{t(路径边数)}-k|\)的最小值. \(n\leq 5\times 10^5,k\leq ...

  5. UOJ 275. 【清华集训2016】组合数问题

    UOJ 275. [清华集训2016]组合数问题 组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数.举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选 ...

  6. UOJ #269. 【清华集训2016】如何优雅地求和

    UOJ #269. [清华集训2016]如何优雅地求和 题目链接 给定一个\(m\)次多项式\(f(x)\)的\(m+1\)个点值:\(f(0)\)到\(f(m)\). 然后求: \[ Q(f,n,x ...

  7. [UOJ#276]【清华集训2016】汽水

    [UOJ#276][清华集训2016]汽水 试题描述 牛牛来到了一个盛产汽水的国度旅行. 这个国度的地图上有 \(n\) 个城市,这些城市之间用 \(n−1\) 条道路连接,任意两个城市之间,都存在一 ...

  8. UOJ #274. 【清华集训2016】温暖会指引我们前行 [lct]

    #274. [清华集训2016]温暖会指引我们前行 题意比较巧妙 裸lct维护最大生成树 #include <iostream> #include <cstdio> #incl ...

  9. UOJ_274_[清华集训2016]温暖会指引我们前行_LCT

    UOJ_274_[清华集训2016]温暖会指引我们前行_LCT 任务描述:http://uoj.ac/problem/274 本题中的字典序不同在于空串的字典序最大. 并且题中要求排序后字典序最大. ...

  10. [清华集训2016]温暖会指引我们前行——LCT+最大生成树

    题目链接: [清华集训2016]温暖会指引我们前行 题目大意:有$n$个点$m$次操作,每次操作分为三种:1.在$u,v$两点之间连接一条编号为$id$,长度为$l$,温度为$t$的边.2.查询从$u ...

随机推荐

  1. android开发——自己定义相机(Camera)开发总结

    近期这段时间我一直在开发自己定义相机.谷歌了些网上的demo.发现有非常多各种各样的问题.终于还是从API的camera类開始学习,进行改进. 以下对之前的实现进行一些总结. 官方camera API ...

  2. iOS开发之NewsstandKit.framework的使用

    本文转载至 http://mobile.51cto.com/iphone-423385.htm   系统提供NewsstandKit.framework来支持newsstand类型的程序,就是在spr ...

  3. extend选项和delimiters选项 vue 数据绑定 html form 对比 id重复

    {{define "chkUrl"}}<!DOCTYPE html><html lang="zh-cmn-Hans"><head& ...

  4. raise 与 raise ... from 的区别

    起步 Python 的 raise 和 raise from 之间的区别是什么? try: print(1 / 0) except Exception as exc: raise RuntimeErr ...

  5. java中设计模式详解

    一.设计模式的分类 总体来说设计模式分为三大类: (1)创建型模式,共五种:工厂方法模式.抽象工厂模式.单例模式.建造者模式.原型模式. (2)结构型模式,共七种:适配器模式.装饰器模式.代理模式.外 ...

  6. HDU4045 Machine scheduling —— 隔板法 + 第二类斯特林数

    题目链接:https://vjudge.net/problem/HDU-4045 Machine scheduling Time Limit: 5000/2000 MS (Java/Others)   ...

  7. Experimental Educational Round: VolBIT Formulas Blitz K. Indivisibility —— 容斥原理

    题目链接:http://codeforces.com/contest/630/problem/K K. Indivisibility time limit per test 0.5 seconds m ...

  8. 关于lock锁

    在 jdk1.5 之后,并发包中新增了 Lock 接口(以及相关实现类)用来实现锁功能,Lock 接口提供了与 synchronized 关键字类似的同步功能,但需要在使用时手动获取锁和释放锁. lo ...

  9. HTML,CSS 无边框桌面窗口

    1. [图片] htmlui.jpg ​2. [代码]下面源码复制到快手(WWW.AAU.CN)中运行即可     import win.ui;/*DSG{{*/var winform = ..win ...

  10. codeforces 665C C. Simple Strings(乱搞)

    题目链接: C. Simple Strings time limit per test 2 seconds memory limit per test 256 megabytes input stan ...