iris二分类

# Linear Support Vector Machine: Soft Margin
# ----------------------------------
#
# This function shows how to use TensorFlow to
# create a soft margin SVM
#
# We will use the iris data, specifically:
# x1 = Sepal Length
# x2 = Petal Width
# Class 1 : I. setosa
# Class -1: not I. setosa
#
# We know here that x and y are linearly seperable
# for I. setosa classification. import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
from tensorflow.python.framework import ops
ops.reset_default_graph() # Set random seeds
np.random.seed(7)
tf.set_random_seed(7) # Create graph
sess = tf.Session() # Load the data
# iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]
iris = datasets.load_iris()
x_vals = np.array([[x[0], x[3]] for x in iris.data])
y_vals = np.array([1 if y == 0 else -1 for y in iris.target]) # Split data into train/test sets
train_indices = np.random.choice(len(x_vals),
round(len(x_vals)*0.9),
replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices] # Declare batch size
batch_size = 135 # Initialize placeholders
x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) # Create variables for linear regression
A = tf.Variable(tf.random_normal(shape=[2, 1]))
b = tf.Variable(tf.random_normal(shape=[1, 1])) # Declare model operations
model_output = tf.subtract(tf.matmul(x_data, A), b) # Declare vector L2 'norm' function squared
l2_norm = tf.reduce_sum(tf.square(A)) # Declare loss function
# Loss = max(0, 1-pred*actual) + alpha * L2_norm(A)^2
# L2 regularization parameter, alpha
alpha = tf.constant([0.01])
# Margin term in loss
classification_term = tf.reduce_mean(tf.maximum(0., tf.subtract(1., tf.multiply(model_output, y_target))))
# Put terms together
loss = tf.add(classification_term, tf.multiply(alpha, l2_norm)) # Declare prediction function
prediction = tf.sign(model_output)
accuracy = tf.reduce_mean(tf.cast(tf.equal(prediction, y_target), tf.float32)) # Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss) # Initialize variables
init = tf.global_variables_initializer()
sess.run(init) # Training loop
loss_vec = []
train_accuracy = []
test_accuracy = []
for i in range(500):
rand_index = np.random.choice(len(x_vals_train), size=batch_size)
rand_x = x_vals_train[rand_index]
rand_y = np.transpose([y_vals_train[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(temp_loss) train_acc_temp = sess.run(accuracy, feed_dict={
x_data: x_vals_train,
y_target: np.transpose([y_vals_train])})
train_accuracy.append(train_acc_temp) test_acc_temp = sess.run(accuracy, feed_dict={
x_data: x_vals_test,
y_target: np.transpose([y_vals_test])})
test_accuracy.append(test_acc_temp) if (i + 1) % 100 == 0:
print('Step #{} A = {}, b = {}'.format(
str(i+1),
str(sess.run(A)),
str(sess.run(b))
))
print('Loss = ' + str(temp_loss)) # Extract coefficients
[[a1], [a2]] = sess.run(A)
[[b]] = sess.run(b)
slope = -a2/a1
y_intercept = b/a1 # Extract x1 and x2 vals
x1_vals = [d[1] for d in x_vals] # Get best fit line
best_fit = []
for i in x1_vals:
best_fit.append(slope*i+y_intercept) # Separate I. setosa
setosa_x = [d[1] for i, d in enumerate(x_vals) if y_vals[i] == 1]
setosa_y = [d[0] for i, d in enumerate(x_vals) if y_vals[i] == 1]
not_setosa_x = [d[1] for i, d in enumerate(x_vals) if y_vals[i] == -1]
not_setosa_y = [d[0] for i, d in enumerate(x_vals) if y_vals[i] == -1] # Plot data and line
plt.plot(setosa_x, setosa_y, 'o', label='I. setosa')
plt.plot(not_setosa_x, not_setosa_y, 'x', label='Non-setosa')
plt.plot(x1_vals, best_fit, 'r-', label='Linear Separator', linewidth=3)
plt.ylim([0, 10])
plt.legend(loc='lower right')
plt.title('Sepal Length vs Pedal Width')
plt.xlabel('Pedal Width')
plt.ylabel('Sepal Length')
plt.show() # Plot train/test accuracies
plt.plot(train_accuracy, 'k-', label='Training Accuracy')
plt.plot(test_accuracy, 'r--', label='Test Accuracy')
plt.title('Train and Test Set Accuracies')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show() # Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()

下面例子数据集可能更好看;

# SVM Regression
#----------------------------------
#
# This function shows how to use TensorFlow to
# solve support vector regression. We are going
# to find the line that has the maximum margin
# which INCLUDES as many points as possible
#
# We will use the iris data, specifically:
# y = Sepal Length
# x = Pedal Width import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
from tensorflow.python.framework import ops
ops.reset_default_graph() # Create graph
sess = tf.Session() # Load the data
# iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]
iris = datasets.load_iris()
x_vals = np.array([x[3] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data]) # Split data into train/test sets
train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices] # Declare batch size
batch_size = 50 # Initialize placeholders
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) # Create variables for linear regression
A = tf.Variable(tf.random_normal(shape=[1,1]))
b = tf.Variable(tf.random_normal(shape=[1,1])) # Declare model operations
model_output = tf.add(tf.matmul(x_data, A), b) # Declare loss function
# = max(0, abs(target - predicted) + epsilon)
# 1/2 margin width parameter = epsilon
epsilon = tf.constant([0.5])
# Margin term in loss
loss = tf.reduce_mean(tf.maximum(0., tf.subtract(tf.abs(tf.subtract(model_output, y_target)), epsilon))) # Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.075)
train_step = my_opt.minimize(loss) # Initialize variables
init = tf.global_variables_initializer()
sess.run(init) # Training loop
train_loss = []
test_loss = []
for i in range(200):
rand_index = np.random.choice(len(x_vals_train), size=batch_size)
rand_x = np.transpose([x_vals_train[rand_index]])
rand_y = np.transpose([y_vals_train[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) temp_train_loss = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_train]), y_target: np.transpose([y_vals_train])})
train_loss.append(temp_train_loss) temp_test_loss = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_test]), y_target: np.transpose([y_vals_test])})
test_loss.append(temp_test_loss)
if (i+1)%50==0:
print('-----------')
print('Generation: ' + str(i+1))
print('A = ' + str(sess.run(A)) + ' b = ' + str(sess.run(b)))
print('Train Loss = ' + str(temp_train_loss))
print('Test Loss = ' + str(temp_test_loss)) # Extract Coefficients
[[slope]] = sess.run(A)
[[y_intercept]] = sess.run(b)
[width] = sess.run(epsilon) # Get best fit line
best_fit = []
best_fit_upper = []
best_fit_lower = []
for i in x_vals:
best_fit.append(slope*i+y_intercept)
best_fit_upper.append(slope*i+y_intercept+width)
best_fit_lower.append(slope*i+y_intercept-width) # Plot fit with data
plt.plot(x_vals, y_vals, 'o', label='Data Points')
plt.plot(x_vals, best_fit, 'r-', label='SVM Regression Line', linewidth=3)
plt.plot(x_vals, best_fit_upper, 'r--', linewidth=2)
plt.plot(x_vals, best_fit_lower, 'r--', linewidth=2)
plt.ylim([0, 10])
plt.legend(loc='lower right')
plt.title('Sepal Length vs Pedal Width')
plt.xlabel('Pedal Width')
plt.ylabel('Sepal Length')
plt.show() # Plot loss over time
plt.plot(train_loss, 'k-', label='Train Set Loss')
plt.plot(test_loss, 'r--', label='Test Set Loss')
plt.title('L2 Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('L2 Loss')
plt.legend(loc='upper right')
plt.show()

高斯核函数的应用,其实也可以自定义很多核函数:

# Illustration of Various Kernels
#----------------------------------
#
# This function wll illustrate how to
# implement various kernels in TensorFlow.
#
# Linear Kernel:
# K(x1, x2) = t(x1) * x2
#
# Gaussian Kernel (RBF):
# K(x1, x2) = exp(-gamma * abs(x1 - x2)^2) import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
from tensorflow.python.framework import ops
ops.reset_default_graph() # Create graph
sess = tf.Session() # Generate non-lnear data
(x_vals, y_vals) = datasets.make_circles(n_samples=350, factor=.5, noise=.1)
y_vals = np.array([1 if y==1 else -1 for y in y_vals])
class1_x = [x[0] for i,x in enumerate(x_vals) if y_vals[i]==1]
class1_y = [x[1] for i,x in enumerate(x_vals) if y_vals[i]==1]
class2_x = [x[0] for i,x in enumerate(x_vals) if y_vals[i]==-1]
class2_y = [x[1] for i,x in enumerate(x_vals) if y_vals[i]==-1] # Declare batch size
batch_size = 350 # Initialize placeholders
x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
prediction_grid = tf.placeholder(shape=[None, 2], dtype=tf.float32) # Create variables for svm
b = tf.Variable(tf.random_normal(shape=[1,batch_size])) # Apply kernel
# Linear Kernel
# my_kernel = tf.matmul(x_data, tf.transpose(x_data)) # Gaussian (RBF) kernel
gamma = tf.constant(-50.0)
dist = tf.reduce_sum(tf.square(x_data), 1)
dist = tf.reshape(dist, [-1,1])
sq_dists = tf.add(tf.subtract(dist, tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data)))), tf.transpose(dist))
my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists))) # Compute SVM Model
first_term = tf.reduce_sum(b)
b_vec_cross = tf.matmul(tf.transpose(b), b)
y_target_cross = tf.matmul(y_target, tf.transpose(y_target))
second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)))
loss = tf.negative(tf.subtract(first_term, second_term)) # Create Prediction Kernel
# Linear prediction kernel
# my_kernel = tf.matmul(x_data, tf.transpose(prediction_grid)) # Gaussian (RBF) prediction kernel
rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1),[-1,1])
rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1),[-1,1])
pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB))
pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist))) prediction_output = tf.matmul(tf.multiply(tf.transpose(y_target),b), pred_kernel)
prediction = tf.sign(prediction_output-tf.reduce_mean(prediction_output))
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(prediction), tf.squeeze(y_target)), tf.float32)) # Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.002)
train_step = my_opt.minimize(loss) # Initialize variables
init = tf.global_variables_initializer()
sess.run(init) # Training loop
loss_vec = []
batch_accuracy = []
for i in range(1000):
rand_index = np.random.choice(len(x_vals), size=batch_size)
rand_x = x_vals[rand_index]
rand_y = np.transpose([y_vals[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(temp_loss) acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x,
y_target: rand_y,
prediction_grid:rand_x})
batch_accuracy.append(acc_temp) if (i+1)%250==0:
print('Step #' + str(i+1))
print('Loss = ' + str(temp_loss)) # Create a mesh to plot points in
x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
np.arange(y_min, y_max, 0.02))
grid_points = np.c_[xx.ravel(), yy.ravel()]
[grid_predictions] = sess.run(prediction, feed_dict={x_data: rand_x,
y_target: rand_y,
prediction_grid: grid_points})
grid_predictions = grid_predictions.reshape(xx.shape) # Plot points and grid
plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8)
plt.plot(class1_x, class1_y, 'ro', label='Class 1')
plt.plot(class2_x, class2_y, 'kx', label='Class -1')
plt.title('Gaussian SVM Results')
plt.xlabel('x')
plt.ylabel('y')
plt.legend(loc='lower right')
plt.ylim([-1.5, 1.5])
plt.xlim([-1.5, 1.5])
plt.show() # Plot batch accuracy
plt.plot(batch_accuracy, 'k-', label='Accuracy')
plt.title('Batch Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show() # Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show() # Evaluate on new/unseen data points
# New data points:
new_points = np.array([(-0.75, -0.75),
(-0.5, -0.5),
(-0.25, -0.25),
(0.25, 0.25),
(0.5, 0.5),
(0.75, 0.75)]) [evaluations] = sess.run(prediction, feed_dict={x_data: x_vals,
y_target: np.transpose([y_vals]),
prediction_grid: new_points}) for ix, p in enumerate(new_points):
print('{} : class={}'.format(p, evaluations[ix]))

tensorflow实现svm iris二分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)的更多相关文章

  1. tensorflow实现svm多分类 iris 3分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)

    # Multi-class (Nonlinear) SVM Example # # This function wll illustrate how to # implement the gaussi ...

  2. 【机器学习具体解释】SVM解二分类,多分类,及后验概率输出

    转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51073885 CSDN−勿在浮沙筑高台 支持向量机(Support Vecto ...

  3. SVM原理以及Tensorflow 实现SVM分类(附代码)

    1.1. SVM介绍 1.2. 工作原理 1.2.1. 几何间隔和函数间隔 1.2.2. 最大化间隔 - 1.2.2.0.0.1. \(L( {x}^*)\)对$ {x}^*$求导为0 - 1.2.2 ...

  4. 用 TensorFlow 实现 SVM 分类问题

    这篇文章解释了底部链接的代码. 问题描述  如上图所示,有一些点位于单位正方形内,并做好了标记.要求找到一条线,作为分类的标准.这些点的数据在 inearly_separable_data.csv ...

  5. python实现HOG+SVM对CIFAR-10数据集分类(上)

    本博客只用于学习,如果有错误的地方,恳请指正,如需转载请注明出处. 看机器学习也是有一段时间了,这两天终于勇敢地踏出了第一步,实现了HOG+SVM对图片分类,具体代码可以在github上下载,http ...

  6. tensorflow实现二分类

    读万卷书,不如行万里路.之前看了不少机器学习方面的书籍,但是实战很少.这次因为项目接触到tensorflow,用一个最简单的深层神经网络实现分类和回归任务. 首先说分类任务,分类任务的两个思路: 如果 ...

  7. Kaggle实战之二分类问题

    0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手 ...

  8. 使用深度学习检测TOR流量——本质上是在利用报文的时序信息、传输速率建模

    from:https://www.jiqizhixin.com/articles/2018-08-11-11 可以通过分析流量包来检测TOR流量.这项分析可以在TOR 节点上进行,也可以在客户端和入口 ...

  9. 大数据DDos检测——DDos攻击本质上是时间序列数据,t+1时刻的数据特点和t时刻强相关,因此用HMM或者CRF来做检测是必然! 和一个句子的分词算法CRF没有区别!

    DDos攻击本质上是时间序列数据,t+1时刻的数据特点和t时刻强相关,因此用HMM或者CRF来做检测是必然!——和一个句子的分词算法CRF没有区别!注:传统DDos检测直接基于IP数据发送流量来识别, ...

随机推荐

  1. TCP/IP详解 卷一(第一章 概述)

    很多不同的厂家生产各种型号的计算机,它们运行完全不同的操作系统,但TCP/IP协议族允许它们相互进行通信. 1.分层 TCP/IP不是一个协议,而是一个协议族,通常它被认为是一个四层的协议系统,下面展 ...

  2. python:如何判断字符串中的内容是否都为数字并且把字符串转换为数字

    使用str.isdigit();有两种使用方法 str.isdigit('12345') =====>True str.isdigit('aaaaa')======>False 或者 '1 ...

  3. Android加载网络图片学习过程

    好多应用,像我们公司的<乘友>还有其他的<飞鸽><陌陌><啪啪>这些,几乎每一款应用都需要加载网络图片,那ToYueXinShangWan,这是比须熟练 ...

  4. glob (programming) and spool (/var/spool)

    http://en.wikipedia.org/wiki/Glob_(programming) In computer programming, in particular in a Unix-lik ...

  5. IDEA------Error:java:无效的目标发行版:1/7

    © 版权声明:本文为博主原创文章,转载请注明出处 使用IDEA发布java web项目时,报错.报错信息如下: 解决方案: 方案一:File-->Settings-->Build,Exec ...

  6. windows下使用Eclipse编译执行MapReduce程序 Hadoop2.6.0/Ubuntu

    一.环境介绍 宿主机:windows8 虚拟机:Ubuntu14.04 hadoop2.6伪分布:搭建教程http://blog.csdn.net/gamer_gyt/article/details/ ...

  7. ubuntu16.04下Cmake学习一

    根据网上的资料,我总结了一下,一个工程应该有根目录(bin)存放可执行文件,头文件目录(include)存放头文件,源码文件(src)存放你的算法,还需要一个库文件夹存放你编译的静态库或者动态库.然后 ...

  8. 如何配置Spring Boot Tomcat

    1.概述 Spring Boot Web应用程序默认包含预配置的嵌入式Web服务器.但在某些情况下,我们要修改默认配置以满足自定义要求. 在本教程中,我们将介绍通过application.proper ...

  9. Java学习之路 第四篇 oop和class (面向对象和类)

    本人水平有限,创作本文是为了记录学习和帮助初学者学习,欢迎指正和补充 一.面向对象编程的设计概述 很多同学都在学校学了电脑的编程,现在的书籍大部分都是oop面向对象编程,一个很抽象的的名字,比较难以理 ...

  10. C++钩子程序浅析

    在网上搜索“键盘记录C++”实现可以找到很多相关文章,我也是照着上面的介绍去研究去试着做的,从懂到不懂.那么为什么有那么多材料我还要去写这样一篇 文章,我想这个是我个人需要关心的问题,我不是那种ctr ...