题目链接:https://vjudge.net/problem/HDU-2243

考研路茫茫——单词情结

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6445    Accepted Submission(s): 2212

Problem Description
背单词,始终是复习英语的重要环节。在荒废了3年大学生涯后,Lele也终于要开始背单词了。
一天,Lele在某本单词书上看到了一个根据词根来背单词的方法。比如"ab",放在单词前一般表示"相反,变坏,离去"等。

于是Lele想,如果背了N个词根,那这些词根到底会不会在单词里出现呢。更确切的描述是:长度不超过L,只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个呢?这里就不考虑单词是否有实际意义。

比如一共有2个词根 aa 和 ab ,则可能存在104个长度不超过3的单词,分别为
(2个) aa,ab,
(26个)aaa,aab,aac...aaz,
(26个)aba,abb,abc...abz,
(25个)baa,caa,daa...zaa,
(25个)bab,cab,dab...zab。

这个只是很小的情况。而对于其他复杂点的情况,Lele实在是数不出来了,现在就请你帮帮他。

 
Input
本题目包含多组数据,请处理到文件结束。
每组数据占两行。
第一行有两个正整数N和L。(0<N<6,0<L<2^31)
第二行有N个词根,每个词根仅由小写字母组成,长度不超过5。两个词根中间用一个空格分隔开。
 
Output
对于每组数据,请在一行里输出一共可能的单词数目。
由于结果可能非常巨大,你只需要输出单词总数模2^64的值。
 
Sample Input
2 3
aa ab
1 2
a
 
Sample Output
104
52
 
Author
linle
 
Recommend
lcy

题意:

给出m个单词,问长度不超过n且至少含有1个单词(可重叠)的字符串有多少个?

题解:

1.由于求“>=1”,那么可以先求出“<1”,即“=0”的有多少个,然后再用总的减去,得到答案。

2.“=0”,即不含有任何一个单词,详情请看:POJ2278 DNA Sequence 。

3. 由于长度<=n,那么我们要求 A^1 + A^2 + …… + A^n,其中A是初步得到的矩阵,怎么求?UVA11149 Power of Matrix 。

4. 最后用总的(26+26^2+……+26^n)减去不含单词的(A^1 + A^2 + …… + A^n 的初始状态那一行之和),即为答案。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef unsigned long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = +; int Size;
struct MA
{
LL mat[][];
void init()
{
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
mat[i][j] = (i==j);
}
}; MA operator+(const MA &x, const MA &y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
ret.mat[i][j] = x.mat[i][j]+y.mat[i][j];
return ret;
} MA operator*(const MA &x, const MA &y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
for(int k = ; k<Size; k++)
ret.mat[i][j] += 1LL*x.mat[i][k]*y.mat[k][j];
return ret;
} MA qpow(MA x, int y)
{
MA s;
s.init();
while(y)
{
if(y&) s = s*x;
x = x*x;
y >>= ;
}
return s;
} MA solve(MA x, int n)
{
if(n==) return x;
MA s;
s.init();
s = (s+qpow(x,n/))*solve(x, n/);
if(n%) s = s+qpow(x, n);
return s;
} struct Trie
{
const static int sz = , base = 'a';
int next[MAXN][sz], fail[MAXN], end[MAXN];
int root, L;
int newnode()
{
for(int i = ; i<sz; i++)
next[L][i] = -;
end[L++] = ;
return L-;
}
void init()
{
L = ;
root = newnode();
}
void insert(char buf[])
{
int len = strlen(buf);
int now = root;
for(int i = ; i<len; i++)
{
if(next[now][buf[i]-base] == -) next[now][buf[i]-base] = newnode();
now = next[now][buf[i]-base];
}
end[now] = ;
}
void build()
{
queue<int>Q;
fail[root] = root;
for(int i = ; i<sz; i++)
{
if(next[root][i] == -) next[root][i] = root;
else fail[next[root][i]] = root, Q.push(next[root][i]);
}
while(!Q.empty())
{
int now = Q.front();
Q.pop();
end[now] |= end[fail[now]]; //当前串的后缀是否也包含单词
for(int i = ; i<sz; i++)
{
if(next[now][i] == -) next[now][i] = next[fail[now]][i];
else fail[next[now][i]] = next[fail[now]][i], Q.push(next[now][i]);
}
}
} LL query(int n)
{
MA s;
memset(s.mat, , sizeof(s.mat));
for(int i = ; i<L; i++)
{
if(end[i]) continue; //存在单词的状态没有后继
for(int j = ; j<sz; j++)
if(end[next[i][j]]==) //存在单词的状态没有前驱
s.mat[i][next[i][j]]++; // i到next[i][j]的路径数+1。注意,当next[i][j]==root时,路径数很可能大于1。
} Size = L;
s = solve(s, n);
LL ret = ;
for(int i = ; i<L; i++) //答案为:初始状态到各个状态(包括初始状态)的路径数之和。
ret += s.mat[][i];
Size = ;
memset(s.mat,,sizeof(s.mat)); //26+26^2……+26^n。
s.mat[][] = ;
s = solve(s, n);
return s.mat[][]-ret;
}
}; Trie ac;
char buf[];
int main()
{
int n, L;
while(scanf("%d%d", &n,&L)!=EOF)
{
ac.init();
for(int i = ; i<=n; i++)
{
scanf("%s", buf);
ac.insert(buf);
}
ac.build();
LL ans = ac.query(L);
printf("%llu\n", ans);
}
return ;
}

HDU2243 考研路茫茫——单词情结 ——AC自动机、矩阵优化的更多相关文章

  1. [hdu2243]考研路茫茫——单词情结(AC自动机+矩阵快速幂)

    题意:长度不超过L,只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个. 解题关键:利用补集转化的思想,先求一个词根也不包含的单词个数,然后用总的减去即可.长度不超过L需要用矩阵维数增加一倍 ...

  2. hdu_2243_考研路茫茫——单词情结(AC自动机+矩阵)

    题目链接:hdu_2243_考研路茫茫——单词情结 题意: 让你求包含这些模式串并且长度不小于L的单词种类 题解: 这题是poj2788的升级版,没做过的强烈建议先做那题. 我们用poj2778的方法 ...

  3. hdu 2243 考研路茫茫——单词情结 AC自动机 矩阵幂次求和

    题目链接 题意 给定\(N\)个词根,每个长度不超过\(5\). 问长度不超过\(L(L\lt 2^{31})\),只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个? 思路 状态(AC自动 ...

  4. HDU-2243 考研路茫茫——单词情结(AC自动机)

    题目大意:给n个单词,长度不超过L的单词有多少个包含n个单词中的至少一个单词. 题目分析:用长度不超过L的单词书目减去长度在L之内所有不包含任何一个单词的书目. 代码如下: # include< ...

  5. hdu 2243 考研路茫茫——单词情结 ac自动机+矩阵快速幂

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2243 题意:给定N(1<= N < 6)个长度不超过5的词根,问长度不超过L(L <23 ...

  6. hdu 2243 考研路茫茫——单词情结(AC自动+矩阵)

    考研路茫茫——单词情结 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  7. HDU 2243 考研路茫茫——单词情结(AC自动机+DP+快速幂)

    题目链接 错的上头了... 这题是DNA的加强版,26^1 +26^2... - A^1-A^2... 先去学了矩阵的等比数列求和,学的是第二种方法,扩大矩阵的方法.剩下就是各种模板,各种套. #in ...

  8. hdu2243 考研路茫茫——单词情结【AC自动机】【矩阵快速幂】

    考研路茫茫——单词情结 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  9. HDU2243 考研路茫茫——单词情结(AC自动机+矩阵快速幂)

    与POJ2778一样.这题是求长度不超过n且包含至少一个词根的单词总数. 长度不超过n的单词总数记为Sn,长度不超过n不包含词根的单词总数记为Tn. 答案就是,Sn-Tn. Sn=26+262+263 ...

随机推荐

  1. Web自动化测试框架改进

    Web自动化测试框架(WebTestFramework)是基于Selenium框架且采用PageObject设计模式进行二次开发形成的框架. 一.适用范围:传统Web功能自动化测试.H5功能自动化测试 ...

  2. Oracle中group by 的扩展函数rollup、cube、grouping sets

    Oracle的group by除了基本使用方法以外,还有3种扩展使用方法,各自是rollup.cube.grouping sets.分别介绍例如以下: 1.rollup 对数据库表emp.如果当中两个 ...

  3. 身份证号码正则匹配-javascript

    function a(a, b) { return a.test(b) } function b(a) { return a = jQuery.trim(a), 0 == a.length } fun ...

  4. c# using三种用法

    http://www.cnblogs.com/fashui/archive/2011/09/29/2195061.html http://www.cnblogs.com/iamv/archive/20 ...

  5. Vue.js 很好,但会比 Angular 或 React 更好吗?

    文章转自:http://www.oschina.net/translate/vuejs-is-good-but-is-it-better-than-angular-or-rea Vue.js 是一个用 ...

  6. phpdoctor 安装,配置,生成文档

    window 下安装phpdoctor 1 安装php,设置环境变量path ,把php 的安装路径加上,比如php 安装在d:/php5/ 2下载phpdoctor,可以去官网下载 http://p ...

  7. Cocos2d-x 3.1.1 学习日志2--error:仅仅有静态常量整型数据成员才干够在类中初始化

        今天遇到比較低端的一个问题,就是成员的初始化问题,编译器也无法验证,不同的编译器有些能过有些不能过,我也不知道为什么,总是我们以vs为准吧,以为我们用的环境就是它,话不多说.解决方式例如以下: ...

  8. 看完这篇再不会 View 的动画框架,我跪搓衣板

    引言 众所周知,一款没有动画的 app,就像没有灵魂的肉体,给用户的体验性很差.现在的 android 在动画效果方面早已空前的发展,1.View 动画框架 2.属性动画框架 3.Drawable 动 ...

  9. Android----SharedPreferences(存储数据)

    SharedPreferences详解 我们在开发软件的时候,常需要向用户提供软件参数设置功能,例如我们常用的微信,用户可以设置是否允许陌生人添加自己为好友.对于软件配置参数的保存,如果是在windo ...

  10. Linux kernel 2.6下的modules编译与KBuild

    转载:http://blog.sina.com.cn/s/blog_602f87700100dq1u.html Sam之前在Linux kernel 2.4下写过一些driver.但自从转到kerne ...